This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289311 #28 Mar 14 2025 02:35:32 %S A289311 0,2,3,4,5,5,7,-2,6,7,11,-5,13,9,8,-24,17,-10,19,-11,10,13,23,-35,10, %T A289311 15,-18,-17,29,-20,31,-38,14,19,12,-50,37,21,16,-57,41,-30,43,-29,-34, %U A289311 25,47,-45,14,-38,20,-35,53,-70,16,-79,22,31,59,-80,61,33,-50 %N A289311 Let f be the multiplicative function satisfying f(p^k) = (1 + p*I)^k for any prime p and k > 0 (where I^2 = -1); a(n) = the imaginary part of f(n). %C A289311 See A289310 for the real part of f and additional comments. %C A289311 See A289320 for the square of the norm of f. %C A289311 a(p) = p for any prime p. %C A289311 The numbers 4 and 2700 are composite fixed points. %C A289311 If a(n) = 0, then a(n^k) = 0 for any k > 0. %C A289311 a(n) = 0 iff Sum_{i=1..k} ( arctan(p_i) * e_i ) = Pi * j for some integer j (where Product_{i=1..k} p_i^e_i is the prime factorization of n). %C A289311 a(n) = 0 for n = 1, 378, 1296, 142884, 489888, 639846, 1679616, 1873638, ... %C A289311 As a(378) = 0 and 378 = 2 * 3^3 * 7, we have arctan(2) + arctan(3)*3 + arctan(7) = j * Pi (with j = 2). %H A289311 Rémy Sigrist, <a href="/A289311/b289311.txt">Table of n, a(n) for n = 1..10000</a> %e A289311 f(12) = f(2^2 * 3) = (1 + 2*I)^2 * (1 + 3*I) = -15 - 5*I, hence a(12) = -5. %t A289311 Array[Im[Times @@ Map[(1 + #1 I)^#2 & @@ # &, FactorInteger@ #]] - Boole[# == 1] &, 63] (* _Michael De Vlieger_, Jul 03 2017 *) %o A289311 (PARI) a(n) = my (f=factor(n)); imag (prod(i=1, #f~, (1 + f[i,1]*I) ^ f[i,2])) %Y A289311 Cf. A289310, A289320. %K A289311 sign %O A289311 1,2 %A A289311 _Rémy Sigrist_, Jul 02 2017