This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289318 #15 Mar 05 2018 04:54:17 %S A289318 1,180,-3780,447840,-59046660,8921092680,-1463828444640, %T A289318 253953515257920,-45858209756343300,8534765953624978260, %U A289318 -1626301691950399586280,315807346469727624396960,-62284193156782292089690080,12443904711281870749228431240 %N A289318 Coefficients in expansion of E_4^(3/4). %H A289318 Seiichi Manyama, <a href="/A289318/b289318.txt">Table of n, a(n) for n = 0..425</a> %F A289318 G.f.: Product_{n>=1} (1-q^n)^(3*A110163(n)/4). %F A289318 a(n) ~ (-1)^(n+1) * c * exp(Pi*sqrt(3)*n) / n^(7/4), where c = 3^(5/2) * Gamma(1/3)^(27/2) / (256 * 2^(3/4) * Pi^9 * Gamma(1/4)) = 0.2007048471908800363193160136812560289856774734680572658944418664975... - _Vaclav Kotesovec_, Jul 08 2017, updated Mar 05 2018 %t A289318 nmax = 20; CoefficientList[Series[(1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^(3/4), {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jul 08 2017 *) %Y A289318 E_4^(k/8): A108091 (k=1), A289307 (k=2), A289308 (k=3), A289292 (k=4), A289309 (k=5), this sequence (k=6), A289319 (k=7). %Y A289318 Cf. A004009 (E_4), A110163. %K A289318 sign %O A289318 0,2 %A A289318 _Seiichi Manyama_, Jul 02 2017