cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289320 a(n) = A289310(n)^2 + A289311(n)^2.

Original entry on oeis.org

1, 5, 10, 25, 26, 50, 50, 125, 100, 130, 122, 250, 170, 250, 260, 625, 290, 500, 362, 650, 500, 610, 530, 1250, 676, 850, 1000, 1250, 842, 1300, 962, 3125, 1220, 1450, 1300, 2500, 1370, 1810, 1700, 3250, 1682, 2500, 1850, 3050, 2600, 2650, 2210, 6250, 2500
Offset: 1

Views

Author

Rémy Sigrist, Jul 02 2017

Keywords

Comments

This sequence is totally multiplicative.
a(n) > n^2 for any n > 1.
If n is a square, then a(n) is a square.
If a(n) and a(m) are squares, then a(n*m) is a square.
a(n) is also a square for nonsquares n = 42, 168, 246, 287, 378, 672, 984, 1050, 1148, 1434, 1512, 1673, 2058, 2214, 2583, 2688, ...

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^2 + 1)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 13 2022 *)
  • PARI
    a(n) = my (f=factor(n)); return (prod(i=1, #f~, (1 + f[i,1]^2) ^ f[i,2]))
    
  • Python
    from sympy import factorint
    from operator import mul
    from functools import reduce
    def a(n): return 1 if n==1 else reduce(mul, [(1 + p**2)**k for p, k in factorint(n).items()])
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Aug 03 2017

Formula

Totally multiplicative, with a(p^k) = (1 + p^2)^k for any prime p and k > 0.
Sum_{k=1..n} a(k) ~ c * n^3, where c = 2/(Pi^2 * Product_{p prime} (1 - 1/p^2 - 1/p^3 - 1/p^4)) = 0.4778963213... . - Amiram Eldar, Nov 13 2022
Sum_{n>=1} 1/a(n) = 15/Pi^2 (A082020). - Amiram Eldar, Dec 15 2022