This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289322 #20 Jul 07 2017 03:28:41 %S A289322 1,1,2,4,8,17,32,64,129,256,513,1024,2051,4093,8192,16381,32746,65523, %T A289322 131082,262168,524262,1048547,2097100,4194345,8388733,16777351, %U A289322 33554669,67109796,134219275,268437750,536872179 %N A289322 Number of 1s in the first 2^n entries of the Kolakoski sequence, A000002. %H A289322 Richard P. Brent, <a href="/A289322/b289322.txt">Table of n, a(n) for n = 0..64</a> %H A289322 Richard P. Brent and Judy-anne H. Osborn, <a href="https://maths-people.anu.edu.au/~brent/pd/Kolakoski-ACCMCC.pdf">A fast algorithm for the Kolakoski sequence</a>, Dec. 2016 %H A289322 J. Nilsson, <a href="http://arxiv.org/abs/1110.4228">A Space Efficient Algorithm for the Calculation of the Digit Distribution in the Kolakoski Sequence</a>, arXiv preprint arXiv:1110.4228 [math.CO], 2011. %H A289322 M. Rao, <a href="http://www.arthy.org/kola/kola.php">Trucs et bidules sur la séquence de Kolakoski</a>, Oct. 2012. %F A289322 a(n) = (2^n + A088568(2^n))/2 = (2^n - A289323(n))/2. %e A289322 The first 32 entries of the Kolakoski sequence, A000002, are 12211212212211211221211212211211. From this we see that a(5)=17, since among the first 2^5 letters, 17 of them are 1s. %Y A289322 Cf. A000002. Analogous for powers of ten is A195206. Equivalent but with smaller entries is A289323. Closely related are A054353, A074286, A088568, A156077. %K A289322 nonn %O A289322 0,3 %A A289322 _Richard P. Brent_, Jul 05 2017