This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289340 #11 Mar 07 2018 17:50:58 %S A289340 1,-328,-41956,-8596032,-2597408634,-916285828640,-352170121921992, %T A289340 -143129703441671168,-60517599938503137519,-26355020095077489965264, %U A289340 -11743692598044815023990588,-5329748160859504303225598464 %N A289340 Coefficients of (q*(j(q)-1728))^(1/3) where j(q) is the elliptic modular invariant. %C A289340 In general, the expansion of (q*(j(q)-1728))^m, where j(q) is the elliptic modular invariant (A000521), and m <> 0, is asymptotic to exp(4*Pi*sqrt(m*n)) * m^(1/4) / (sqrt(2) * n^(3/4)) if 2*m is the positive integer, else is asymptotic to 2^(2*m) * 3^(4*m) * Pi^(2*m) * exp(2*Pi*(n-m)) / (Gamma(-2*m) * Gamma(3/4)^(8*m) * n^(2*m + 1)). - _Vaclav Kotesovec_, Mar 07 2018 %F A289340 G.f.: Product_{k>=1} (1-q^k)^(A289061(k)/3). %F A289340 a(n) ~ c * exp(2*Pi*n) / n^(5/3), where c = -2^(2/3) * 3^(5/6) * exp(-2*Pi/3) * Gamma(2/3) / (Pi^(1/3) * Gamma(3/4)^(8/3)) = -0.262554753987597280323546158564... - _Vaclav Kotesovec_, Mar 07 2018 %t A289340 CoefficientList[Series[((256/QPochhammer[-1, x]^8 + x*QPochhammer[-1, x]^16/256)^3 - 1728*x)^(1/3), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Mar 07 2018 *) %Y A289340 (q*(j(q)-1728))^(k/24): A106203 (k=1), A289330 (k=2), A289331 (k=3), A289332 (k=4), A289333 (k=5), A289334 (k=6), A289339 (k=7), this sequence (k=8), A007242 (k=12), A289063 (k=24). %Y A289340 Cf. A289061. %K A289340 sign %O A289340 0,2 %A A289340 _Seiichi Manyama_, Jul 02 2017