cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289352 Irregular triangle read by rows: T(n,k) = the number of Dyck paths of semilength n with floor((n+2)/2) up movements in odd numbered positions and k returns to the x axis.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 2, 3, 6, 8, 6, 10, 15, 15, 10, 50, 60, 45, 20, 105, 140, 126, 84, 35, 490, 560, 420, 224, 70, 1176, 1470, 1260, 840, 420, 126, 5292, 5880, 4410, 2520, 1050, 252, 13860, 16632, 13860, 9240, 4950, 1980, 462, 60984, 66528, 49896, 29568, 13860, 4752, 924
Offset: 1

Views

Author

Roger Ford, Jul 03 2017

Keywords

Examples

			n\k  1    2    3    4    5
1    1
2    0    1
3    1    2
4    1    2    3
5    6    8    6
6   10   15   15   10
7   50   60   45   20
8  105  140  126   84   35
9  490  560  420  224   70
T(4,3)=3: (U = up in odd position, u = up in even position, d = down, _ = return to x axis, floor ((n+2)/2) = 3 up movements in odd position)  Ud_Ud_Uudd_, Uudd_Ud_Ud_, Ud_Uudd_Ud_.
		

Crossrefs

Formula

T(1,1)=1, T(2,1)=0, T(2,2)=1, For n >= 3, T(n,k) = (1/floor((n-1)/2))*C(n-1,floor((n-3)/2))*C(n-1-k,floor((n-3)/2))*k (conjectured).
Row sums of T(n,k) = A005558(a(n-1)).
T(n,1) = A001263(T(n-1,floor(n/2)).
T(n,floor((n+2)/2)) = A001405(a(n-1)).