cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289368 Coefficients in expansion of (E_6^2/E_4^3)^(1/24).

This page as a plain text file.
%I A289368 #28 Mar 04 2018 12:42:29
%S A289368 1,-72,-6048,-4217184,-1264437504,-606533479920,-251777443450752,
%T A289368 -117085712395216320,-53634689421870422016,-25408429618361083967592,
%U A289368 -12110787335129301116994240,-5854620911089647830793873696
%N A289368 Coefficients in expansion of (E_6^2/E_4^3)^(1/24).
%H A289368 Seiichi Manyama, <a href="/A289368/b289368.txt">Table of n, a(n) for n = 0..367</a>
%F A289368 G.f.: (1 - 1728/j)^(1/24).
%F A289368 G.f.: Product_{n>=1} (1-q^n)^(12*A289367(n)).
%F A289368 a(n) ~ c * exp(2*Pi*n) / n^(13/12), where c = -Gamma(1/4)^(1/3) / (2^(7/3) * 3^(23/24) * Pi^(1/4) * Gamma(11/12)) = -0.07569217204117312767729284017524325060022536591050774997610261275428... - _Vaclav Kotesovec_, Jul 08 2017, updated Mar 04 2018
%F A289368 a(n) * A289369(n) ~ -(sqrt(3)-1) * exp(4*Pi*n) / (24*sqrt(2)*Pi*n^2). - _Vaclav Kotesovec_, Mar 04 2018
%t A289368 nmax = 20; CoefficientList[Series[((1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^2 / (1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^3)^(1/24), {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jul 08 2017 *)
%Y A289368 (E_6^2/E_4^3)^(k/288): A289366 (k=1), A296609 (k=2), A296614 (k=3), A296652 (k=4), A297021 (k=6), A299422 (k=8), A299862 (k=9), this sequence (k=12), A299856 (k=16), A299857 (k=18), A299858 (k=24), A299863 (k=32), A299859 (k=36), A299860 (k=48), A299861 (k=72), A299414 (k=96), A299413 (k=144), A289210 (k=288).
%Y A289368 Cf. A000521 (j), A108091 (E_4^(1/8)), A109817 (E_6^(1/12)).
%Y A289368 Cf. A289366, A289367, A294974, A294976.
%K A289368 sign
%O A289368 0,2
%A A289368 _Seiichi Manyama_, Jul 04 2017