cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289391 Coefficients in expansion of E_14^(1/4).

This page as a plain text file.
%I A289391 #34 Jun 16 2018 12:32:30
%S A289391 1,-6,-49212,-10451544,-4218246978,-1581565900392,-677142351901080,
%T A289391 -293172823731286848,-132241381826055031692,-60651805300034501958126,
%U A289391 -28350123351848675673466968,-13420046900399367136336144200
%N A289391 Coefficients in expansion of E_14^(1/4).
%H A289391 Seiichi Manyama, <a href="/A289391/b289391.txt">Table of n, a(n) for n = 0..367</a>
%F A289391 G.f.: Product_{n>=1} (1-q^n)^(A289029(n)/4).
%F A289391 a(n) ~ c * exp(2*Pi*n) / n^(5/4), where c = -3*Pi^2 / (2^(17/4) * Gamma(3/4)^9) = -0.2497407198517688195944362279691013167903920989625478927175764401875... - _Vaclav Kotesovec_, Jul 08 2017, updated Mar 05 2018
%F A289391 G.f.: Sum_{k>=0} A004984(k) * (3*f(q))^k where f(q) is Sum_{k>=1} sigma_13(k)*q^k. - _Seiichi Manyama_, Jun 16 2018
%t A289391 nmax = 20; CoefficientList[Series[(1 - 24*Sum[DivisorSigma[13, k]*x^k, {k, 1, nmax}])^(1/4), {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jul 08 2017 *)
%Y A289391 E_k^(1/4): A289392 (k=2), A289307 (k=4), A289326 (k=6), A289292 (k=8), A110150 (k=10), this sequence (k=14).
%Y A289391 Cf. A004984, A058550 (E_14).
%K A289391 sign
%O A289391 0,2
%A A289391 _Seiichi Manyama_, Jul 05 2017