cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289399 Total path length of the complete ternary tree of height n.

This page as a plain text file.
%I A289399 #21 Apr 26 2021 02:44:47
%S A289399 0,3,21,102,426,1641,6015,21324,73812,250959,841449,2790066,9167358,
%T A289399 29893557,96855123,312088728,1000836264,3196219035,10169787837,
%U A289399 32252755710,101988443730,321655860993,1012039172391,3177332285412,9955641160956,31137856397031
%N A289399 Total path length of the complete ternary tree of height n.
%H A289399 Colin Barker, <a href="/A289399/b289399.txt">Table of n, a(n) for n = 0..1000</a>
%H A289399 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-15,9).
%F A289399 From _Colin Barker_, Jul 05 2017: (Start)
%F A289399 G.f.: 3*x / ((1 - x)*(1 - 3*x)^2).
%F A289399 a(n) = 3*(1 - 3^n + 2*3^n*n) / 4.
%F A289399 a(n) = 7*a(n-1) - 15*a(n-2) + 9*a(n-3) for n>2.
%F A289399 (End)
%e A289399 The complete ternary tree of height two consists of one root node (at depth 0), three children of the root (at depth 1) and 9 leaf nodes (at depth 2). Thus a(2) = 0 + 3*1 + 9*2 = 21.
%o A289399 (PARI) concat(0, Vec(3*x / ((1 - x)*(1 - 3*x)^2) + O(x^30))) \\ _Colin Barker_, Jul 05 2017
%Y A289399 Partial sums of A036290.
%K A289399 nonn,easy
%O A289399 0,2
%A A289399 _F. Skerman_, Jul 05 2017