cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289404 Binary representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 566", based on the 5-celled von Neumann neighborhood.

This page as a plain text file.
%I A289404 #31 Feb 16 2025 08:33:48
%S A289404 1,1,11,11,111,111,1111,1111,11111,11111,111111,111111,1111111,
%T A289404 1111111,11111111,11111111,111111111,111111111,1111111111,1111111111,
%U A289404 11111111111,11111111111,111111111111,111111111111,1111111111111,1111111111111,11111111111111
%N A289404 Binary representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 566", based on the 5-celled von Neumann neighborhood.
%C A289404 Initialized with a single black (ON) cell at stage zero.
%D A289404 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H A289404 Robert Price, <a href="/A289404/b289404.txt">Table of n, a(n) for n = 0..126</a>
%H A289404 Robert Price, <a href="/A289404/a289404.tmp.txt">Diagrams of first 20 stages</a>
%H A289404 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H A289404 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A289404 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A289404 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H A289404 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A289404 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H A289404 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F A289404 Conjectures from _Colin Barker_, Jul 05 2017: (Start)
%F A289404 G.f.: 1 / ((1 - x)*(1 - 10*x^2)).
%F A289404 a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) for n>2.
%F A289404 (End)
%F A289404 Conjectures from _Federico Provvedi_, Nov 21 2018: (Start)
%F A289404 a(n) = (10^(1 + floor(n/2)) - 1)/9.
%F A289404 a(n) = (sqrt(10)^(n+1)*((sqrt(10)-1)*(-1)^n+(sqrt(10)+1))-2)/18.
%F A289404 (End)
%t A289404 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t A289404 code = 566; stages = 128;
%t A289404 rule = IntegerDigits[code, 2, 10];
%t A289404 g = 2 * stages + 1; (* Maximum size of grid *)
%t A289404 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t A289404 ca = a;
%t A289404 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t A289404 PrependTo[ca, a];
%t A289404 (* Trim full grid to reflect growth by one cell at each stage *)
%t A289404 k = (Length[ca[[1]]] + 1)/2;
%t A289404 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t A289404 Table[FromDigits[Table[ca[[i, j, j]], {j, 1, i}], 10], {i, 1, stages - 1}]
%Y A289404 Cf. A289405, A052551, A032085.
%K A289404 nonn,easy
%O A289404 0,3
%A A289404 _Robert Price_, Jul 05 2017