cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289405 Binary representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 566", based on the 5-celled von Neumann neighborhood.

This page as a plain text file.
%I A289405 #10 Feb 16 2025 08:33:48
%S A289405 1,10,110,1100,11100,111000,1111000,11110000,111110000,1111100000,
%T A289405 11111100000,111111000000,1111111000000,11111110000000,
%U A289405 111111110000000,1111111100000000,11111111100000000,111111111000000000,1111111111000000000,11111111110000000000
%N A289405 Binary representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 566", based on the 5-celled von Neumann neighborhood.
%C A289405 Initialized with a single black (ON) cell at stage zero.
%D A289405 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H A289405 Robert Price, <a href="/A289405/b289405.txt">Table of n, a(n) for n = 0..126</a>
%H A289405 Robert Price, <a href="/A289405/a289405.tmp.txt">Diagrams of first 20 stages</a>
%H A289405 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H A289405 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A289405 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A289405 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H A289405 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A289405 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H A289405 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F A289405 Conjectures from _Colin Barker_, Jul 05 2017: (Start)
%F A289405 G.f.: 1 / ((1 - 10*x)*(1 - 10*x^2)).
%F A289405 a(n) = 10*a(n-1) + 10*a(n-2) - 100*a(n-3) for n>2.
%F A289405 (End)
%t A289405 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t A289405 code = 566; stages = 128;
%t A289405 rule = IntegerDigits[code, 2, 10];
%t A289405 g = 2 * stages + 1; (* Maximum size of grid *)
%t A289405 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t A289405 ca = a;
%t A289405 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t A289405 PrependTo[ca, a];
%t A289405 (* Trim full grid to reflect growth by one cell at each stage *)
%t A289405 k = (Length[ca[[1]]] + 1)/2;
%t A289405 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t A289405 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
%Y A289405 Cf. A289404, A052551, A032085.
%K A289405 nonn,easy
%O A289405 0,2
%A A289405 _Robert Price_, Jul 05 2017