cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289410 Irregular triangular array T(m,k) with m (row) >= 1 and k (column) >= 1 read by rows: number of m-digit numbers whose digit sum is k.

This page as a plain text file.
%I A289410 #47 Jul 19 2017 17:08:17
%S A289410 1,1,1,1,1,1,1,1,1,1,2,3,4,5,6,7,8,9,9,8,7,6,5,4,3,2,1,1,3,6,10,15,21,
%T A289410 28,36,45,54,61,66,69,70,69,66,61,54,45,36,28,21,15,10,6,3,1,1,4,10,
%U A289410 20,35,56,84,120,165,219,279,342,405,465,519,564,597,615,615,597,564,519,465,405,342,279,219,165,120,84
%N A289410 Irregular triangular array T(m,k) with m (row) >= 1 and k (column) >= 1 read by rows: number of m-digit numbers whose digit sum is k.
%C A289410 The m-th row is palindromic; T(m,k) = T(m,9*m+1-k).
%H A289410 Miquel Cerda, <a href="/A289410/b289410.txt">Rows n=1..10 of triangle, flattened</a>
%F A289410 G.f. of row m: (1 - x^10)^(m-1)*(x - x^10)/(1 - x)^m.
%F A289410 G.f. as array: (1+x+x^2)*(1+x^3+x^6)*x*y/(1-y*(1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9)). - _Robert Israel_, Jul 19 2017
%e A289410 The irregular triangle T(m,k) begins:
%e A289410 m\k  1  2  3  4  5   6   7   8   9   10   11  12   13   14  15  16  17  18  19
%e A289410 1    1  1  1  1  1   1   1   1   1;
%e A289410 2    1  2  3  4  5   6   7   8   9    9    8   7    6    5   4   3   2   1;
%e A289410 3    1  3  6  10 15  21  28  36  45   54   61  66   69   70  69  66  61  54 45,...;
%e A289410 4    1  4  10 20 35  56  84  120 165  219  279 342  405  465,...;
%e A289410 5    1  5  15 35 70  126 210 330 495  714  992 1330 1725,...;
%e A289410 6    1  6  21 56 126 252 462 792 1287 2001 2992,...;
%e A289410 etc.
%e A289410 Row m(2), column k(4) there are 4 numbers of 2-digits whose digits sum = 4: 13, 22, 31, 40.
%p A289410 row:= proc(m) local g; g:= normal((1 - x^10)^(m-1)*(x - x^10)/(1 - x)^m);
%p A289410 seq(coeff(g,x,j),j=1..9*m) end proc:
%p A289410 seq(row(k),k=1..5); # _Robert Israel_, Jul 19 2017
%Y A289410 The row sums = 9*10^(m-1) = A052268(n). The row lengths = 9*m = A008591(n). The middle diagonal = A071976. (row m=3) = A071817, (row m=4) = A090579, (row m=5) = A090580, (row m=6) = A090581, (row m=7) = A278969, (row m=8) = A278971, (row m=9) = A289354, (column k=3) = A000217, (column k=4) = A000292, (column k=5) = A000332, (column k=6) = A000389, (column k=7) = A000579, (column k=8) = A000580, (column k=9) = A000581, (column k=10) = A035927.
%K A289410 nonn,base,tabf
%O A289410 1,11
%A A289410 _Miquel Cerda_, Jul 05 2017
%E A289410 Edited by _Robert Israel_, Jul 19 2017