This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289437 #18 Apr 23 2020 11:19:25 %S A289437 0,1,1,1,2,2,2,3,2,3,4,3,4,5,4,4,6,5,5,7,6,6,8,6,6,9,8,7,10,8,8,11,8, %T A289437 10,12,9,10,13,10,10,14,11,12,15,12,12,16,14,12,17,13,13,18,15,16,19, %U A289437 14,15,20,15,16,21,16,16,22,17,17,23,20 %N A289437 The arithmetic function v_2(n,4). %D A289437 J. Butterworth, Examining the arithmetic function v_g(n,h). Research Papers in Mathematics, B. Bajnok, ed., Gettysburg College, Vol. 8 (2008). %H A289437 Bela Bajnok, <a href="https://arxiv.org/abs/1705.07444">Additive Combinatorics: A Menu of Research Problems</a>, arXiv:1705.07444 [math.NT], May 2017. See Table in Section 1.6.1. %p A289437 a:= n-> n*max(seq((floor((d-1-igcd(d, 2))/4)+1) %p A289437 /d, d=numtheory[divisors](n))): %p A289437 seq(a(n), n=2..100); # _Alois P. Heinz_, Jul 07 2017 %t A289437 a[n_]:=n*Max[Table[(Floor[(d - 1 - GCD[d, 2])/4] + 1)/d, {d, Divisors[n]}]]; Table[a[n], {n, 2, 100}] (* _Indranil Ghosh_, Jul 08 2017 *) %o A289437 (PARI) %o A289437 v(g,n,h)={my(t=0);fordiv(n,d,t=max(t,((d-1-gcd(d,g))\h + 1)*(n/d)));t} %o A289437 a(n)=v(2,n,4); \\ _Andrew Howroyd_, Jul 07 2017 %o A289437 (Python) %o A289437 from sympy import divisors, floor, gcd %o A289437 def a(n): return n*max([(floor((d - 1 - gcd(d, 2))/4) + 1)/d for d in divisors(n)]) %o A289437 print([a(n) for n in range(2, 101)]) # _Indranil Ghosh_, Jul 08 2017 %Y A289437 Cf. A289436, A289438. %K A289437 nonn %O A289437 2,5 %A A289437 _N. J. A. Sloane_, Jul 07 2017 %E A289437 a(41)-a(70) from _Andrew Howroyd_, Jul 07 2017