This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289482 #11 Jul 14 2017 10:17:36 %S A289482 1,1,7,1341,5828185,517500496981,877820839402932499, %T A289482 27202373147496127842409429,14934414860406931133627906259665137, %U A289482 142143740345412121643458345045577780672138977,23087568034858117342849941754170955046637454778184629205 %N A289482 Number of Dyck paths of semilength n^2 and height n. %H A289482 Alois P. Heinz, <a href="/A289482/b289482.txt">Table of n, a(n) for n = 0..40</a> %F A289482 a(n) = A289481(n,n). %F A289482 a(n) ~ c * 2^(2*n^2) / n^4, where c = 0.034180619793706218467525729844898502557235639065782754227258170112282483988... - _Vaclav Kotesovec_, Jul 14 2017 %p A289482 b:= proc(x, y, k) option remember; %p A289482 `if`(x=0, 1, `if`(y>0, b(x-1, y-1, k), 0)+ %p A289482 `if`(y < min(x-1, k), b(x-1, y+1, k), 0)) %p A289482 end: %p A289482 a:= n-> `if`(n=0, 1, b(2*n^2, 0, n)-b(2*n^2, 0, n-1)): %p A289482 seq(a(n), n=0..12); %t A289482 b[x_, y_, k_]:=b[x, y, k]=If[x==0, 1, If[y>0, b[x - 1, y - 1, k], 0] + If[y<Min[x - 1, k], b[x - 1, y + 1, k], 0]]; a[n_]:=a[n]=If[n==0, 1, b[2n^2, 0, n] - b[2n^2, 0, n - 1]]; Table[a[n], {n, 0, 12}] (* _Indranil Ghosh_, Jul 08 2017 *) %Y A289482 Main diagonal of A289481. %K A289482 nonn %O A289482 0,3 %A A289482 _Alois P. Heinz_, Jul 06 2017