cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289523 Lexicographically earliest sequence of positive integers such that no circles centered at (n, a(n)) with radius sqrt(n) overlap.

This page as a plain text file.
%I A289523 #12 Jul 08 2017 00:48:34
%S A289523 1,4,7,1,11,16,5,21,27,34,10,1,41,17,49,25,57,6,33,66,43,14,75,85,24,
%T A289523 1,51,95,34,62,106,10,79,117,129,21,43,141,90,1,55,68,103,31,152,13,
%U A289523 116,80,130,165,43,180,195,1,57,92,23,142,107,209,71,225,123
%N A289523 Lexicographically earliest sequence of positive integers such that no circles centered at (n, a(n)) with radius sqrt(n) overlap.
%H A289523 Peter Kagey, <a href="/A289523/b289523.txt">Table of n, a(n) for n = 1..3000</a>
%H A289523 Peter Kagey, <a href="/A289523/a289523_1.png">Plot of the first 500 circles</a>
%e A289523 For n = 3, a(3) = 7 because a circle centered at (3, 1) with radius sqrt(3) intersects the circle centered at (1, 1) with radius sqrt(1); a circle centered at (3, k) with radius sqrt(3) intersects the circle centered at (2, 4) with radius sqrt(2), for 2 <= k <= 6; therefore the circle centered at (3, 7) is the circle with the least y-coordinate that does not intersect any of the existing circles.
%p A289523 A[1]:= 1:
%p A289523 for n from 2 to 100 do
%p A289523   excl:= {}:
%p A289523   for i from 1 to n-1 do
%p A289523     if (i-n)^2 <= i+n or 4*n*i > ((i-n)^2 - (n+i))^2 then
%p A289523       r:=  ceil(sqrt((sqrt(n)+sqrt(i))^2 - (n-i)^2))-1;
%p A289523       excl:= excl union {$(A[i]-r) .. (A[i]+r)};
%p A289523     fi
%p A289523   od;
%p A289523   A[n]:= min({$1..max(excl)+1} minus excl);
%p A289523 od:
%p A289523 seq(A[i],i=1..100); # _Robert Israel_, Jul 07 2017
%K A289523 nonn
%O A289523 1,2
%A A289523 _Peter Kagey_, Jul 07 2017