This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289540 #42 Jan 15 2025 14:47:26 %S A289540 1,42,12852,4780104,1974512526,863778376440,391960077239304, %T A289540 182430901827757632,86505196617272556900,41607881477457256661154, %U A289540 20239469012268054187498440,9935363620927698868439915544,4914082482014906612773260362232 %N A289540 Coefficients in expansion of 1/E_6^(1/12). %H A289540 Seiichi Manyama, <a href="/A289540/b289540.txt">Table of n, a(n) for n = 0..367</a> %F A289540 G.f.: Product_{n>=1} (1-q^n)^(-A288851(n)/12). %F A289540 a(n) ~ c * exp(2*Pi*n) / n^(11/12), where c = 2^(5/12) * Gamma(3/4)^(4/3) / (3^(1/6) * Pi^(1/3) * Gamma(1/12)) = 0.08654217651555778130817946575840803466... - _Vaclav Kotesovec_, Jul 26 2017, updated Mar 05 2018 %F A289540 a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A299503(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Feb 27 2018 %t A289540 nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(-1/12), {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jul 26 2017 *) %Y A289540 E_6^(k/12): A289570 (k=-18), A000706 (k=-12), A289567 (k=-6), this sequence (k=-1), A109817 (k=1), A289325 (k=2), A289326 (k=3), A289327 (k=4), A289328 (k=5), A289293 (k=6), A289345 (k=7), A289346 (k=8), A289347 (k=9), A289348 (k=10), A289349 (k=11). %Y A289540 Cf. A013973, A288851, A299503. %K A289540 nonn %O A289540 0,2 %A A289540 _Seiichi Manyama_, Jul 15 2017