cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289542 Number of ordered pairs of nonzero vectors over the subspaces of GF(2)^n.

This page as a plain text file.
%I A289542 #27 Jul 17 2017 21:07:03
%S A289542 0,1,12,119,1290,16957,285264,6343523,190424310,7826128009,
%T A289542 444658035228,35162773747631,3888419271339330,603295404971492053,
%U A289542 131635270366023841896,40458451431717420232187,17536781855825299937977230,10728658644626168469625854241
%N A289542 Number of ordered pairs of nonzero vectors over the subspaces of GF(2)^n.
%F A289542 a(n)/[n]_q! is the coefficient of x^n in the expansion of (exp_q(x))^2*(x + 2 x^2) when q->2 and where exp_q(x) is the q-exponential function and [n]_q! is the q-factorial of n.
%t A289542 nn = 20; eq[z_] := Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}];
%t A289542 Table[FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0, nn}]
%t A289542 CoefficientList[Series[ eq[z]^2 (z + 2 z^2) /. q -> 2, {z, 0, nn}], z]
%Y A289542 Cf. A182176, A289537, A289538, A289539, A289541.
%K A289542 nonn
%O A289542 0,3
%A A289542 _Geoffrey Critzer_, Jul 15 2017