This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289543 #7 Jul 29 2017 22:01:18 %S A289543 1,0,1,1,281,9921,16078337,13596908545,191426147495937, %T A289543 3273234077014474753,497324772153177747947521, %U A289543 154709087482207635347155451905,291534668371237082293312814285062145,1534814232386517133354150755522868689240065,39269743760371912650589750432327799926355436503041,3338607968166762847572429548161284663670177988768356630529 %N A289543 Number of direct sum decompositions of GF(2)^n that do not contain any subspaces of dimension 1. %C A289543 q-analog of A000296. %H A289543 David Ellerman, <a href="http://arxiv.org/abs/1603.07619">The number of direct-sum decompositions of a finite vector space</a>, arXiv:1603.07619 [math.CO], 2016. %H A289543 Kent E. Morrison, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Morrison/morrison37.html">Integer Sequences and Matrices Over Finite Fields</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1 %F A289543 a(n)/A002884(n) is the coefficient of x^n in the expansion of exp(Sum_{k>1}x^k/A002884(k)). %t A289543 nn = 15; q := 2; g[n_] := (q - 1)^n q^Binomial[n, 2] FunctionExpand[QFactorial[n, q]]; G[z_] :=Sum[z^k/g[k], {k, 1, nn}];Table[g[n], {n, 0, nn}] CoefficientList[ %t A289543 Series[Exp[G[z] - z], {z, 0, nn}], z] %Y A289543 Cf. A270881, A287406. %K A289543 nonn %O A289543 0,5 %A A289543 _Geoffrey Critzer_, Jul 19 2017