cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289557 Expansion of Hypergeometric function F(1/12, 7/12; 1; 1728*x) in powers of x.

This page as a plain text file.
%I A289557 #20 Jul 08 2017 03:33:35
%S A289557 1,84,62244,64318800,76748408100,99281740718160,135254824771706640,
%T A289557 191023977418391557440,277044462249611005649700,
%U A289557 410066847753461267769800400,616822552390756438979333761680,940037569843512813004504652800320
%N A289557 Expansion of Hypergeometric function F(1/12, 7/12; 1; 1728*x) in powers of x.
%H A289557 Seiichi Manyama, <a href="/A289557/b289557.txt">Table of n, a(n) for n = 0..309</a>
%H A289557 R. S. Maier, <a href="http://arxiv.org/abs/0807.1081">Nonlinear differential equations satisfied by certain classical modular forms</a>, arXiv:0807.1081 [math.NT], 2008-2010, p. 34 equation (7.30).
%F A289557 a(n) * n^2 = a(n-1) * 12 * (12*n - 5) * (12*n - 11).
%F A289557 a(n) = (12^n/n!^2) * Product_{k=0..n-1} (12k+1)*(12k+7).
%F A289557 a(n) ~ 2^(6*n-5/6) * 3^(3*n) / (sqrt(Pi) * Gamma(1/6) * n^(4/3)). - _Vaclav Kotesovec_, Jul 08 2017
%o A289557 (PARI) a(n) = (12^n/n!^2) * prod(k=0, n-1, (12*k+1)*(12*k+7)); \\ _Michel Marcus_, Jul 08 2017
%Y A289557 Cf. A092870, A289325.
%K A289557 nonn
%O A289557 0,2
%A A289557 _Seiichi Manyama_, Jul 07 2017