This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289559 #20 Jul 30 2020 07:17:39 %S A289559 1,2,3,3,3,6,7,3,7,6,11,9,10,14,9,3,13,14,19,9,21,22,23,9,11,20,19,21, %T A289559 22,18,31,6,33,26,21,21,37,38,30,9,41,42,43,33,21,46,47,9,43,22,39,30, %U A289559 53,38,33,21,57,44,59,27,61,62,49,11,30,66,67 %N A289559 Number of modulo n residues among sums of two fourth powers. %C A289559 Conjecture: the only primes p for which a(p) < p are 5, 13, 17, 29. - _Robert Israel_, Jul 09 2017 %C A289559 Conjecture is true: see Math Overflow link. - _Robert Israel_, Apr 01 2020 %H A289559 Robert Israel, <a href="/A289559/b289559.txt">Table of n, a(n) for n = 1..10000</a> %H A289559 Mathematics Overflow, <a href="https://mathoverflow.net/questions/356270/does-the-expression-x4-y4-take-on-all-values-in-mathbbz-p-mathbbz">Does the expression x^4+y^4 take on all values in Z/pZ</a> (see answer by J. Silverman) %e A289559 a(7) = 7 because (j^4 + k^4) mod 7, where j and k are integers, can take on all 7 values 0..6; e.g.: %e A289559 (0^4 + 0^4) mod 7 = ( 0 + 0) mod 7 = 0 mod 7 = 0; %e A289559 (0^4 + 1^4) mod 7 = ( 0 + 1) mod 7 = 1 mod 7 = 1; %e A289559 (1^4 + 1^4) mod 7 = ( 1 + 1) mod 7 = 2 mod 7 = 2; %e A289559 (1^4 + 2^4) mod 7 = ( 1 + 16) mod 7 = 17 mod 7 = 3; %e A289559 (2^4 + 2^4) mod 7 = (16 + 16) mod 7 = 32 mod 7 = 4; %e A289559 (1^4 + 3^4) mod 7 = ( 1 + 81) mod 7 = 82 mod 7 = 5; %e A289559 (2^4 + 3^4) mod 7 = (16 + 81) mod 7 = 97 mod 7 = 6. %e A289559 a(16) = 3 because (j^4 + k^4) mod 16 can take on only the three values 0, 1, and 2. (This is because j^4 mod 16 = 0 for all even j and 1 for all odd j.) %p A289559 f1:= proc(n) option remember; local S; %p A289559 S:= {seq(x^4 mod n, x=0..n-1)}; %p A289559 nops({seq(seq(S[i]+S[j] mod n,i=1..j),j=1..nops(S))}); %p A289559 end proc: %p A289559 f:= proc(n) local t; %p A289559 mul(f1(t[1]^t[2]), t = ifactors(n)[2]) %p A289559 end proc: %p A289559 map(f, [$1..100]); # _Robert Israel_, Jul 09 2017 %t A289559 f1[n_] := f1[n] = Module[{S = Table[Mod[x^4, n], {x, 0, n-1}] // Union}, Table[Mod[S[[i]] + S[[j]], n], {j, 1, Length[S]}, {i, 1, j}] // Flatten // Union // Length]; %t A289559 f[n_] := Module[{p, e}, Product[{p, e} = pe; f1[p^e], {pe, FactorInteger[n]}]]; %t A289559 Array[f, 100] (* _Jean-François Alcover_, Jul 30 2020, after Maple *) %o A289559 (PARI) a(n) = #Set(vector(n^2, i, ((i%n)^4 + (i\n)^4) % n)); \\ _Michel Marcus_, Jul 08 2017 %Y A289559 Cf. A155918 (gives number of modulo n residues among sums of two squares). %K A289559 nonn,mult %O A289559 1,2 %A A289559 _Jon E. Schoenfield_, Jul 08 2017