cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289562 Coefficients of 1/(q*(j(q)-1728))^3 where j(q) is the elliptic modular invariant.

This page as a plain text file.
%I A289562 #16 Mar 07 2018 17:11:47
%S A289562 1,2952,5218884,7138351488,8319960432666,8678332561127616,
%T A289562 8338315178481134040,7518590274496806176256,6444205834302869333758299,
%U A289562 5298802621872639665867604832,4208666443076672300677008045636,3246069554930472099322915758511872
%N A289562 Coefficients of 1/(q*(j(q)-1728))^3 where j(q) is the elliptic modular invariant.
%H A289562 Seiichi Manyama, <a href="/A289562/b289562.txt">Table of n, a(n) for n = 0..362</a>
%F A289562 G.f.: Product_{n>=1} (1-q^n)^(-3*A289061(n)).
%F A289562 a(n) ~ c * exp(2*Pi*n) * n^5, where c = Gamma(3/4)^24 * exp(6*Pi) / (4081466880 * Pi^6) = 0.0051446247390864841578336638645072392120317488530740050289688... - _Vaclav Kotesovec_, Mar 07 2018
%t A289562 CoefficientList[Series[((256/QPochhammer[-1, x]^8 + x*QPochhammer[-1, x]^16/256)^3 - 1728*x)^(-3), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Mar 07 2018 *)
%Y A289562 (q*(j(q)-1728))^(k/24): A289563 (k=-96), this sequence (k=-72), A289561 (k=-48), A289417 (k=-24), A289416 (k=-1), A106203 (k=1), A289330 (k=2), A289331 (k=3), A289332 (k=4), A289333 (k=5), A289334 (k=6), A007242 (k=12), A289063 (k=24).
%Y A289562 Cf. A289061.
%K A289562 nonn
%O A289562 0,2
%A A289562 _Seiichi Manyama_, Jul 08 2017