This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289567 #19 Mar 05 2018 06:29:27 %S A289567 1,252,103572,46355904,21754545876,10493652271032,5153897870227008, %T A289567 2563741466120209536,1287429765611338091988,651251466581383330576956, %U A289567 331360676706818772917367912,169399388595923901462013678656 %N A289567 Coefficients in expansion of 1/E_6^(1/2). %H A289567 Seiichi Manyama, <a href="/A289567/b289567.txt">Table of n, a(n) for n = 0..367</a> %F A289567 G.f.: Product_{n>=1} (1-q^n)^(-A288851(n)/2). %F A289567 a(n) ~ c * exp(2*Pi*n) / sqrt(n), where c = 2^(5/2) * Gamma(3/4)^8 / (3*Pi^(5/2)) = 0.5480868931611627439175185425300450785609564636925943866686455998197... - _Vaclav Kotesovec_, Jul 09 2017, updated Mar 03 2018 %t A289567 nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(-1/2), {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jul 09 2017 *) %Y A289567 1/E_k^(1/2): A289565 (k=2), A289566 (k=4), this sequence (k=6), A001943 (k=8), A289568 (k=10), A289569 (k=14). %Y A289567 E_6^(k/12): A289570 (k=-18), A000706 (k=-12), this sequence (k=-6), A109817 (k=1), A289325 (k=2), A289326 (k=3), A289327 (k=4), A289328 (k=5), A289293 (k=6), A289345 (k=7), A289346 (k=8), A289347 (k=9), A289348 (k=10), A289349 (k=11). %Y A289567 Cf. A000706 (1/E_6), A288851, A289293 (E_6^(1/2)). %K A289567 nonn %O A289567 0,2 %A A289567 _Seiichi Manyama_, Jul 08 2017