This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289568 #17 Mar 07 2018 04:09:41 %S A289568 1,132,93852,35163744,18119136156,8462089683432,4234179302847648, %T A289568 2096050696254014016,1057219212439789539228,534730176137991079392036, %U A289568 272470142855167873443179352,139363825115618499934478625696 %N A289568 Coefficients in expansion of 1/E_10^(1/2). %H A289568 Seiichi Manyama, <a href="/A289568/b289568.txt">Table of n, a(n) for n = 0..367</a> %F A289568 G.f.: Product_{n>=1} (1-q^n)^(-A289024(n)/2). %F A289568 a(n) ~ c * exp(2*Pi*n) / sqrt(n), where c = 0.4542595790370690606664796229968194763901027924111318430568304678613... = 2^(7/2) * Gamma(3/4)^12 / (3^(3/2) * Pi^(7/2)). - _Vaclav Kotesovec_, Jul 09 2017, updated Mar 07 2018 %t A289568 nmax = 20; CoefficientList[Series[(1 - 264*Sum[DivisorSigma[9, k]*x^k, {k, 1, nmax}])^(-1/2), {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jul 09 2017 *) %Y A289568 1/E_k^(1/2): A289565 (k=2), A289566 (k=4), A289567 (k=6), A001943 (k=8), this sequence (k=10), A289569 (k=14). %Y A289568 Cf. A285836 (1/E_10), A289024, A289294 (E_10^(1/2)). %K A289568 nonn %O A289568 0,2 %A A289568 _Seiichi Manyama_, Jul 08 2017