This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289570 #22 Mar 05 2018 08:06:12 %S A289570 1,756,501228,311671584,187266950892,110121960638088, %T A289570 63808586297102304,36578013578688141504,20797655630223547290348, %U A289570 11749541312124028845092052,6603568491137827506152966712,3695593478842608407829235523808 %N A289570 Coefficients in expansion of 1/E_6^(3/2). %H A289570 Seiichi Manyama, <a href="/A289570/b289570.txt">Table of n, a(n) for n = 0..365</a> %F A289570 G.f.: Product_{n>=1} (1-q^n)^(-3*A288851(n)/2). %F A289570 a(n) ~ c * exp(2*Pi*n) * sqrt(n), where c = 2^(17/2) * Gamma(3/4)^24 / (27 * Pi^(13/2)) = 1.0344943380746471723299237298670710161068814236907171661035... - _Vaclav Kotesovec_, Jul 09 2017, updated Mar 05 2018 %t A289570 nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(-3/2), {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jul 09 2017 *) %Y A289570 E_6^(k/12): this sequence (k=-18), A000706 (k=-12), A289567 (k=-6), A109817 (k=1), A289325 (k=2), A289326 (k=3), A289327 (k=4), A289328 (k=5), A289293 (k=6), A289345 (k=7), A289346 (k=8), A289347 (k=9), A289348 (k=10), A289349 (k=11). %Y A289570 Cf. A288851. %K A289570 nonn %O A289570 0,2 %A A289570 _Seiichi Manyama_, Jul 08 2017