This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289637 #25 Jul 11 2017 08:46:52 %S A289637 504,287280,153540576,82226602080,44031499226064,23578504122108096, %T A289637 12626092121367162816,6761166974864088760512, %U A289637 3620548496603402008959384,1938773508354916749345180960,1038197035676506069321210300320 %N A289637 Coefficients in expansion of -q*E'_6/E_6 where E_6 is the Eisenstein Series (A013973). %H A289637 Seiichi Manyama, <a href="/A289637/b289637.txt">Table of n, a(n) for n = 1..366</a> %F A289637 a(n) = Sum_{d|n} d * A288851(d). %F A289637 a(n) = A288840(n)/2 + 12*A000203(n). %F A289637 a(n) = -Sum_{k=1..n-1} A013973(k)*a(n-k) - A013973(n)*n. %F A289637 G.f.: 1/2 * E_8/E_6 - 1/2 * E_2. %F A289637 a(n) ~ exp(2*Pi*n). - _Vaclav Kotesovec_, Jul 09 2017 %t A289637 nmax = 20; Rest[CoefficientList[Series[504*x*Sum[k*DivisorSigma[5, k]*x^(k-1), {k, 1, nmax}]/(1 - 504*Sum[DivisorSigma[5, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Jul 09 2017 *) %Y A289637 -q*E'_k/E_k: A289635 (k=2), A289636 (k=4), this sequence (k=6), A289638 (k=8), A289639 (k=10), A289640 (k=14). %Y A289637 Cf. A000706, A006352 (E_2), A013973 (E_6), A145095, A288851. %K A289637 nonn %O A289637 1,1 %A A289637 _Seiichi Manyama_, Jul 09 2017