cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289640 Coefficients in expansion of -q*E'_14/E_14 where E_14 is the Eisenstein Series (A058550).

This page as a plain text file.
%I A289640 #25 Jul 11 2017 08:46:25
%S A289640 24,393840,128962656,87898218720,42722691563664,23880530579622336,
%T A289640 12556395110261366976,6777250576938845733312,
%U A289640 3616836970791932655993144,1939629997080836352904793760,1037999388408269242271021494560
%N A289640 Coefficients in expansion of -q*E'_14/E_14 where E_14 is the Eisenstein Series (A058550).
%H A289640 Seiichi Manyama, <a href="/A289640/b289640.txt">Table of n, a(n) for n = 1..366</a>
%F A289640 a(n) = Sum_{d|n} d * A289029(d).
%F A289640 a(n) = 2*A288261(n)/3 + A288840(n)/2 + 28*A000203(n).
%F A289640 a(n) = -Sum_{k=1..n-1} A058550(k)*a(n-k) - A058550(n)*n.
%F A289640 G.f.: 2/3 * E_6/E_4 + 1/2 * E_8/E_6 - 7/6 * E_2.
%F A289640 a(n) ~ exp(2*Pi*n). - _Vaclav Kotesovec_, Jul 09 2017
%t A289640 nmax = 20; Rest[CoefficientList[Series[24*x*Sum[k*DivisorSigma[13, k]*x^(k-1), {k, 1, nmax}]/(1 - 24*Sum[DivisorSigma[13, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Jul 09 2017 *)
%Y A289640 -q*E'_k/E_k: A289635 (k=2), A289636 (k=4), A289637 (k=6), A289638 (k=8), A289639 (k=10), this sequence (k=14).
%Y A289640 Cf. A006352 (E_2), A058550 (E_14), A287964, A289029.
%K A289640 nonn
%O A289640 1,1
%A A289640 _Seiichi Manyama_, Jul 09 2017