A289679 a(n) = Catalan(n-1)*Bell(n).
1, 2, 10, 75, 728, 8526, 115764, 1776060, 30240210, 563870450, 11397261720, 247700513242, 5750374629244, 141819106313800, 3698639651089800, 101603353693132215, 2929908721122796680, 88427704298354261610, 2785943404258558905900, 91410200883108291556680, 3117102657076175159955420
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..446
- Pierre Lescanne, Zaionc paradox revisited, arXiv:2104.06723 [cs.LO], 2021.
- Paul Tarau, A Hiking Trip Through the Orders of Magnitude: Deriving Efficient Generators for Closed Simply-Typed Lambda Terms and Normal Forms, arXiv preprint arXiv:1608.03912 [cs.PL], 2016. See Example 5.
- Paul Tarau and Valeria de Paiva, Deriving Theorems in Implicational Linear Logic, Declaratively, (2020).
Programs
-
Mathematica
Array[CatalanNumber[# - 1] BellB[#] &, 21] (* Michael De Vlieger, Aug 04 2017 *)
-
Python
from sympy.functions.combinatorial.numbers import bell, catalan def A289679(n): return catalan(n-1)*bell(n) # Chai Wah Wu, Oct 15 2024