cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289693 The number of partitions of [n] with exactly 3 blocks without peaks.

Original entry on oeis.org

0, 0, 1, 3, 9, 27, 75, 197, 503, 1263, 3132, 7695, 18784, 45649, 110585, 267276, 644907, 1554208, 3742321, 9005265, 21659603, 52078400, 125186565, 300870586, 723010749, 1737273406, 4174084259, 10028409724, 24092769583, 57880137331
Offset: 1

Views

Author

R. J. Mathar, Jul 09 2017

Keywords

Crossrefs

Programs

  • Maple
    with(orthopoly) :
    nmax := 10:
    tpr := 1+x^2/2 :
    k := 3:
    g := x^k ;
    for j from 1 to k do
            if j> 1 then
                    g := g*( U(j-1,tpr)-(1+x)*U(j-2,tpr)) / ((1-x)*U(j-1,tpr)-U(j-2,tpr)) ;
            else
                    # note that U(-1,.)=0, U(0,.)=1
                    g := g* U(j-1,tpr) / ((1-x)*U(j-1,tpr)) ;
            end if;
    end do:
    simplify(%) ;
    taylor(g,x=0,nmax+1) ;
    gfun[seriestolist](%) ; # R. J. Mathar, Mar 11 2021

Formula

From Colin Barker, Nov 07 2017: (Start)
G.f.: x^3*(1 - x + x^2)*(1 - 2*x + 3*x^2 - x^3 + x^4) / ((1 - x)*(1 - 2*x + x^2 - x^3)*(1 - 3*x + 3*x^2 - 4*x^3 + x^4 - x^5)).
a(n) = 6*a(n-1) - 15*a(n-2) + 24*a(n-3) - 29*a(n-4) + 25*a(n-5) - 17*a(n-6) + 9*a(n-7) - 3*a(n-8) + a(n-9) for n>9.
(End)