A289693 The number of partitions of [n] with exactly 3 blocks without peaks.
0, 0, 1, 3, 9, 27, 75, 197, 503, 1263, 3132, 7695, 18784, 45649, 110585, 267276, 644907, 1554208, 3742321, 9005265, 21659603, 52078400, 125186565, 300870586, 723010749, 1737273406, 4174084259, 10028409724, 24092769583, 57880137331
Offset: 1
Keywords
Links
- T. Mansour and M. Shattuck, Counting Peaks and Valleys in a Partition of a Set, J. Int. Seq. 13 (2010), 10.6.8, Table 1.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,24,-29,25,-17,9,-3,1).
Programs
-
Maple
with(orthopoly) : nmax := 10: tpr := 1+x^2/2 : k := 3: g := x^k ; for j from 1 to k do if j> 1 then g := g*( U(j-1,tpr)-(1+x)*U(j-2,tpr)) / ((1-x)*U(j-1,tpr)-U(j-2,tpr)) ; else # note that U(-1,.)=0, U(0,.)=1 g := g* U(j-1,tpr) / ((1-x)*U(j-1,tpr)) ; end if; end do: simplify(%) ; taylor(g,x=0,nmax+1) ; gfun[seriestolist](%) ; # R. J. Mathar, Mar 11 2021
Formula
From Colin Barker, Nov 07 2017: (Start)
G.f.: x^3*(1 - x + x^2)*(1 - 2*x + 3*x^2 - x^3 + x^4) / ((1 - x)*(1 - 2*x + x^2 - x^3)*(1 - 3*x + 3*x^2 - 4*x^3 + x^4 - x^5)).
a(n) = 6*a(n-1) - 15*a(n-2) + 24*a(n-3) - 29*a(n-4) + 25*a(n-5) - 17*a(n-6) + 9*a(n-7) - 3*a(n-8) + a(n-9) for n>9.
(End)