A289694 The number of partitions of [n] with exactly 4 blocks without peaks.
0, 0, 0, 1, 4, 16, 64, 236, 818, 2736, 8934, 28622, 90324, 281792, 871556, 2677750, 8184383, 24913238, 75593383, 228793147, 691094857, 2084237036, 6277871658, 18890568921, 56798001639, 170665733660, 512554832309, 1538718547049
Offset: 1
Links
- T. Mansour and M. Shattuck, Counting Peaks and Valleys in a Partition of a Set, J. Int. Seq. 13 (2010), 10.6.8, Table 1.
- Index entries for linear recurrences with constant coefficients, signature (10,-45,130,-280,471,-643,734,-701,575,-400,237,-121,49,-18,4,-1).
Programs
-
Maple
with(orthopoly) : nmax := 15: tpr := 1+x^2/2 : k := 4: g := x^k ; for j from 1 to k do if j> 1 then g := g*( U(j-1,tpr)-(1+x)*U(j-2,tpr)) / ((1-x)*U(j-1,tpr)-U(j-2,tpr)) ; else # note that U(-1,.)=0, U(0,.)=1 g := g* U(j-1,tpr) / ((1-x)*U(j-1,tpr)) ; end if; end do: simplify(%) ; taylor(g,x=0,nmax+1) ; gfun[seriestolist](%) ; # R. J. Mathar, Mar 11 2021
Formula
G.f. x^4*(x^2-x+1)*(x^4-x^3+3*x^2-2*x+1)*(x^6-x^5+5*x^4-4*x^3+6*x^2-3*x+1) / ( (x-1)*(x^5-x^4+4*x^3-3*x^2+3*x-1)*(x^7-x^6+6*x^5-5*x^4+10*x^3-6*x^2+4*x-1)*(x^3-x^2+2*x-1) ). - R. J. Mathar, Mar 11 2021
a(n)= 10*a(n-1) -45*a(n-2) +130*a(n-3) -280*a(n-4) +471*a(n-5) -643*a(n-6) +734*a(n-7) -701*a(n-8) +575*a(n-9) -400*a(n-10) +237*a(n-11) -121*a(n-12) +49*a(n-13) -18*a(n-14) +4*a(n-15) -a(n-16). - R. J. Mathar, Mar 11 2021