cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289694 The number of partitions of [n] with exactly 4 blocks without peaks.

Original entry on oeis.org

0, 0, 0, 1, 4, 16, 64, 236, 818, 2736, 8934, 28622, 90324, 281792, 871556, 2677750, 8184383, 24913238, 75593383, 228793147, 691094857, 2084237036, 6277871658, 18890568921, 56798001639, 170665733660, 512554832309, 1538718547049
Offset: 1

Views

Author

R. J. Mathar, Jul 09 2017

Keywords

Crossrefs

Cf. A289692 (2 blocks), A289693 (3 blocks).

Programs

  • Maple
    with(orthopoly) :
    nmax := 15:
    tpr := 1+x^2/2 :
    k := 4:
    g := x^k ;
    for j from 1 to k do
        if j> 1 then
            g := g*( U(j-1,tpr)-(1+x)*U(j-2,tpr)) / ((1-x)*U(j-1,tpr)-U(j-2,tpr)) ;
        else
            # note that U(-1,.)=0, U(0,.)=1
            g := g* U(j-1,tpr) / ((1-x)*U(j-1,tpr)) ;
        end if;
    end do:
    simplify(%) ;
    taylor(g,x=0,nmax+1) ;
    gfun[seriestolist](%) ; # R. J. Mathar, Mar 11 2021

Formula

G.f. x^4*(x^2-x+1)*(x^4-x^3+3*x^2-2*x+1)*(x^6-x^5+5*x^4-4*x^3+6*x^2-3*x+1) / ( (x-1)*(x^5-x^4+4*x^3-3*x^2+3*x-1)*(x^7-x^6+6*x^5-5*x^4+10*x^3-6*x^2+4*x-1)*(x^3-x^2+2*x-1) ). - R. J. Mathar, Mar 11 2021
a(n)= 10*a(n-1) -45*a(n-2) +130*a(n-3) -280*a(n-4) +471*a(n-5) -643*a(n-6) +734*a(n-7) -701*a(n-8) +575*a(n-9) -400*a(n-10) +237*a(n-11) -121*a(n-12) +49*a(n-13) -18*a(n-14) +4*a(n-15) -a(n-16). - R. J. Mathar, Mar 11 2021