This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289699 #14 Nov 29 2018 16:21:28 %S A289699 11,13,15,19,33,35,39,59,63,75,105,143,187,213,271,307,431,549,1211, %T A289699 1597,1879,2025,3085,5995,5997,6697,6795,10543,21515,25811,34345, %U A289699 57561,70797,71671 %N A289699 Numbers k such that k!6 - 32 is prime, where k!6 is the sextuple factorial number (A085158). %C A289699 Corresponding primes are: 23, 59, 373, 1697, 7577923, 21827543, 295540213, ... %C A289699 a(35) > 10^5. %C A289699 Terms > 39 correspond to probable primes. %H A289699 Henri & Renaud Lifchitz, <a href="http://www.primenumbers.net/prptop/searchform.php?form=n!6-32&action=Search">PRP Records. Search for n!6-32.</a> %H A289699 Joe McLean, <a href="http://web.archive.org/web/20091027034731/http://uk.geocities.com/nassarawa%40btinternet.com/probprim2.htm">Interesting Sources of Probable Primes</a> %H A289699 OpenPFGW Project, <a href="http://sourceforge.net/projects/openpfgw/">Primality Tester</a> %e A289699 15!6 - 32 = 15*9*3 - 32 = 373 is prime, so 15 is in the sequence. %t A289699 MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]]; %t A289699 Select[Range[10, 50000], PrimeQ[MultiFactorial[#, 6] - 32] &] %Y A289699 Cf. A007661, A037082, A084438, A123910, A242994. %K A289699 nonn,more %O A289699 1,1 %A A289699 _Robert Price_, Jul 09 2017 %E A289699 a(32)-a(34) from _Robert Price_, Aug 04 2018