A289741 a(n) = Kronecker symbol (-20/n).
0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0
Offset: 0
Links
- Antti Karttunen, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Kronecker Symbol
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,-1).
Crossrefs
Cf. A035170 (inverse Moebius transform).
Kronecker symbols {(d/n)} where d is a fundamental discriminant with |d| <= 24: A109017 (d=-24), A011586 (d=-23), this sequence (d=-20), A011585 (d=-19), A316569 (d=-15), A011582 (d=-11), A188510 (d=-8), A175629 (d=-7), A101455 (d=-4), A102283 (d=-3), A080891 (d=5), A091337 (d=8), A110161 (d=12), A011583 (d=13), A011584 (d=17), A322829 (d=21), A322796 (d=24).
Programs
-
Mathematica
Array[KroneckerSymbol[-20, #]&, 100, 0] (* Amiram Eldar, Jan 10 2019 *)
-
PARI
a(n) = kronecker(-20, n)
Formula
Completely multiplicative with a(p) = a(p mod 20) for primes p.
a(n) = -a(n+10) = -a(-n) for all n in Z.
Multiplicative with a(2) = a(5) = 0, a(p) = (-1)^floor(p/10) otherwise; equivalently: a(n) = (-1)^floor(n/10) if n is coprime to 2*5, 0 otherwise. - M. F. Hasler, Feb 28 2022
Comments