cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289762 Triangular array T(m,k) = (m+1-k)^2 + k - 1 with m (row) >= 1 and k (column) >= 1, read by rows.

This page as a plain text file.
%I A289762 #45 Jul 17 2017 04:43:40
%S A289762 1,1,4,2,2,4,9,5,3,3,5,9,16,10,6,4,4,6,10,16,25,17,11,7,5,5,7,11,17,
%T A289762 25,36,26,18,12,8,6,6,8,12,18,26,36,49,37,27,19,13,9,7,7,9,13,19,27,
%U A289762 37,49,64,50,38,28,20,14,10,8,8,10,14,20,28,38,50,64,81,65,51,39,29,21,15,11,9
%N A289762 Triangular array T(m,k) = (m+1-k)^2 + k - 1 with m (row) >= 1 and k (column) >= 1, read by rows.
%C A289762 The n-th row is of length = max(2n, 1) and the row sum is (2n^3 + 6n^2 - 2n) / 3.
%C A289762 Rows m = 2, 3, 5, 11, and 41 (Euler's lucky numbers) give the prime numbers generated by the famous polynomials, but twice each one between m^2.
%H A289762 Miquel Cerda, <a href="/A289762/b289762.txt">Table of n, a(n) for n = 1..306</a>
%H A289762 Miquel Cerda, <a href="/A289762/a289762.pdf">Triangle rows 1..41</a>
%H A289762 Miquel Cerda, <a href="/A289762/a289762_1.pdf">Isosceles triangle Rows 1..41</a>
%F A289762 The formula that gives the integers in the m-th rows can be expressed using quadratic polynomials:
%F A289762 for row m = 1, a(k) = k^2 - 3*k + 3
%F A289762 for row m = 2, a(k) = k^2 - 5*k + 8
%F A289762 for row m = 3, a(k) = k^2 - 7*k + 15
%F A289762 for row m = 4, a(k) = k^2 - 9*k + 24
%F A289762 for row m = 5, a(k) = k^2 - 11*k + 35
%F A289762 for row m = 6, a(k) = k^2 - 13*k + 48
%F A289762 etc.
%e A289762 The m-th row start and end: T(m,1) = m^2, ..., T(m,2m) = m^2.
%e A289762 In general T(m,k) = T(m,2m+1-k).
%e A289762 m\k    1     2     3     4     5     6     7     8     9     10
%e A289762 1      1,    1,
%e A289762 2      4,    2,    2,    4
%e A289762 3      9,    5,    3,    3,    5,    9
%e A289762 4      16,   10,   6,    4,    4,    6,    10,   16
%e A289762 5      25,   17,   11,   7,    5,    5,    7,    11,   17,   25
%e A289762 6      36,   26,   18,   12,   8,    6,    6,    8,    12,   18, ...
%e A289762 7      49,   37,   27,   19,   13,   9,    7,    7,    9,    13, ...
%e A289762 8      64,   50,   38,   28,   20,   14,   10,   8,    8,    10, ...
%e A289762 9      81,   65,   51,   39,   29,   21,   15,   11,   9,    9, ...
%e A289762 10     100,  82,   66,   52,   40,   30    22,   16,   12,   10, ...
%e A289762 The T(m,k) sequence as an isosceles triangle:
%e A289762                                      1  1
%e A289762                                  4   2  2  4
%e A289762                              9   5   3  3  5  9
%e A289762                          16  10  6   4  4  6  10  16
%e A289762                      25  17  11  7   5  5  7  11  17  25
%e A289762                  36  26  18  12  8   6  6  8  12  18  26  36
%e A289762              49  37  27  19  13  9   7  7  9  13  19  27  37  49
%e A289762          64  50  38  28  20  14  10  8  8  1  14  20  28  38  50  64
%e A289762      81  65  51  39  29  21  15  11  9  9  11 15  21  29  39  51  65  81
%e A289762 100  82  66  52  40  30  22  16  12  10 10 12 16  22  30  40  52  66  82  100
%t A289762 Table[(m + 1 - k)^2 + k - 1, {m, 0, 10}, {k, 2 m}] /. {} -> {0} // Flatten (* _Michael De Vlieger_, Jul 12 2017 *)
%o A289762 (PARI) T(m,k) = (m+1-k)^2+k-1 \\ _Charles R Greathouse IV_, Jul 12 2017
%Y A289762 m(41, k+1) = A060566(n), left and right border gives A000290(n).
%K A289762 nonn,tabf,easy
%O A289762 1,3
%A A289762 _Miquel Cerda_, Jul 12 2017