cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289767 Binary representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 598", based on the 5-celled von Neumann neighborhood.

This page as a plain text file.
%I A289767 #8 Feb 16 2025 08:33:49
%S A289767 1,10,110,1100,10100,101000,1011000,10110000,100010000,1000100000,
%T A289767 11011100000,110111000000,1000101000000,10001010000000,
%U A289767 110110110000000,1101101100000000,10000000100000000,100000001000000000,1100000111000000000,11000001110000000000
%N A289767 Binary representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 598", based on the 5-celled von Neumann neighborhood.
%C A289767 Initialized with a single black (ON) cell at stage zero.
%D A289767 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H A289767 Robert Price, <a href="/A289767/b289767.txt">Table of n, a(n) for n = 0..126</a>
%H A289767 Robert Price, <a href="/A289767/a289767.tmp.txt">Diagrams of first 20 stages</a>
%H A289767 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H A289767 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A289767 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A289767 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H A289767 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A289767 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H A289767 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%t A289767 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t A289767 code = 598; stages = 128;
%t A289767 rule = IntegerDigits[code, 2, 10];
%t A289767 g = 2 * stages + 1; (* Maximum size of grid *)
%t A289767 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t A289767 ca = a;
%t A289767 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t A289767 PrependTo[ca, a];
%t A289767 (* Trim full grid to reflect growth by one cell at each stage *)
%t A289767 k = (Length[ca[[1]]] + 1)/2;
%t A289767 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t A289767 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
%Y A289767 Cf. A289766, A289768, A289769.
%K A289767 nonn,easy
%O A289767 0,2
%A A289767 _Robert Price_, Jul 12 2017