cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289768 Decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 598", based on the 5-celled von Neumann neighborhood.

This page as a plain text file.
%I A289768 #16 May 20 2025 12:53:31
%S A289768 1,1,3,3,5,5,13,13,17,17,59,59,81,81,219,219,257,257,899,899,1349,
%T A289768 1349,3437,3437,4353,4353,15235,15235,20805,20805,56173,56173,65537,
%U A289768 65537,229379,229379,344069,344069,876557,876557,1118225,1118225,3913787,3913787
%N A289768 Decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 598", based on the 5-celled von Neumann neighborhood.
%C A289768 Initialized with a single black (ON) cell at stage zero.
%D A289768 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H A289768 Robert Price, <a href="/A289768/b289768.txt">Table of n, a(n) for n = 0..126</a>
%H A289768 Robert Price, <a href="/A289768/a289768.tmp.txt">Diagrams of first 20 stages</a>
%H A289768 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H A289768 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A289768 Stephen Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A289768 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H A289768 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A289768 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H A289768 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F A289768 a(n) = Sum_{k=0..n} 2^k*(A167630(floor(n/2), k) mod 2). - _Mélika Tebni_, May 20 2025
%t A289768 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t A289768 code = 598; stages = 128;
%t A289768 rule = IntegerDigits[code, 2, 10];
%t A289768 g = 2 * stages + 1; (* Maximum size of grid *)
%t A289768 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t A289768 ca = a;
%t A289768 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t A289768 PrependTo[ca, a];
%t A289768 (* Trim full grid to reflect growth by one cell at each stage *)
%t A289768 k = (Length[ca[[1]]] + 1)/2;
%t A289768 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t A289768 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
%Y A289768 Cf. A167630, A289766, A289767, A289769.
%K A289768 nonn,easy
%O A289768 0,3
%A A289768 _Robert Price_, Jul 12 2017