This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289776 #25 Sep 16 2017 03:15:56 %S A289776 2,4,30,16,84,36,60,144,144,144,144,210,324,360,630,756,756,576,660, %T A289776 840,840,2040,900,900,2304,1980,1980,1980,4320,5184,3300,4620,5460, %U A289776 7056,3960,4680,2520,3600,3600,3600,10080,8100,3600,6300,9900,7920,11088,14400 %N A289776 Least k such that the sum of the first n divisors of k is a prime number. %C A289776 The corresponding primes are 3, 7, 11, 31, 23, 37, 43, 61, 79, 103, 139, 191, 523, 167, 263, 347, 431, 787, 641, ... %C A289776 The squares in the sequence are 4, 16, 36, 144, 324, 576, 900, 2304, 3600, 5184, 7056, 8100, 14400, ... %H A289776 Chai Wah Wu, <a href="/A289776/b289776.txt">Table of n, a(n) for n = 2..1000</a> %e A289776 a(4)=30 because the sum of the first 4 divisors of 30 is 1 + 2 + 3 + 5 = 11, which is prime, and there is no integer below 30 with this property. %p A289776 with(numtheory):nn:=10^6: %p A289776 for n from 2 to 50 do: %p A289776 ii:=0: %p A289776 for k from 2 to nn while(ii=0) do: %p A289776 x:=divisors(k):n0:=nops(x): %p A289776 for l from 1 to n0 while(ii=0) do: %p A289776 p:=sum('x[i]', 'i'=1..l): %p A289776 if type(p,prime)=true and l=n %p A289776 then %p A289776 ii:=1:printf (`%d %d \n`,n,k): %p A289776 else fi: %p A289776 od: %p A289776 od: %p A289776 od: %t A289776 Table[k = 1; While[Nand[Length@ # >= n, PrimeQ@ Total@ Take[PadRight[#, n], n]] &@ Divisors@ k, k++]; k, {n, 2, 49}] (* _Michael De Vlieger_, Jul 12 2017 *) %o A289776 (PARI) a(n) = k=1; while((d=divisors(k)) && ((#d<n) || !isprime(sum(j=1, n, d[j]))), k++); k; \\ _Michel Marcus_, Jul 12 2017 %o A289776 (Python) %o A289776 from sympy import divisors, isprime %o A289776 def A289776(n): %o A289776 i = 1 %o A289776 while len(divisors(i)) < n or not isprime(sum(divisors(i)[:n])): %o A289776 i += 1 %o A289776 return i # _Chai Wah Wu_, Aug 05 2017 %Y A289776 Cf. A000040, A027750, A240698. %K A289776 nonn %O A289776 2,1 %A A289776 _Michel Lagneau_, Jul 12 2017