This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289782 #22 Aug 19 2017 13:32:07 %S A289782 2,9,35,146,593,2428,9911,40495,165399,675637,2759792,11273144, %T A289782 46048100,188095781,768327108,3138436438,12819777601,52365789305, %U A289782 213901984464,873739509697,3569021260182,14578615958179,59550231769665,243248749683441,993614171826023 %N A289782 p-INVERT of the Lucas numbers (A000032), where p(S) = 1 - S - S^2. %C A289782 Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the INVERT transform of s, so that p-INVERT is a generalization of the INVERT transform (e.g., A033453). %C A289782 See A289780 for a guide to related sequences. %H A289782 Clark Kimberling, <a href="/A289782/b289782.txt">Table of n, a(n) for n = 0..1000</a> %H A289782 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4, 2, -7, 1) %F A289782 G.f.: (-2 - x + 5 x^2 - 2 x^3)/(-1 + 4 x + 2 x^2 - 7 x^3 + x^4). %F A289782 a(n) = 4*a(n-1) + 2*a(n-2) - 7*a(n-3) + a(n-4). %t A289782 z = 60; s = (2 - x) x/(1 - x - x^2); p = 1 - s - s^2; %t A289782 Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000032 *) %t A289782 Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289782 *) %Y A289782 Cf. A000032, A289780. %K A289782 nonn,easy %O A289782 0,1 %A A289782 _Clark Kimberling_, Aug 10 2017