A289785 p-INVERT of the (5^n), where p(S) = 1 - S - S^2.
1, 7, 48, 325, 2183, 14588, 97161, 645719, 4285240, 28411789, 188257719, 1246893028, 8256349457, 54659946215, 361825274112, 2394939574997, 15851402375719, 104912178457996, 694343294142105, 4595323060281271, 30412598132972936, 201274210714545437
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (11, -29)
Programs
-
Mathematica
z = 60; s = x/(1 - 5*x); p = 1 - s - s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000351 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289785 *)
-
PARI
Vec(x*(1 - 4*x) / (1 - 11*x + 29*x^2) + O(x^30)) \\ Colin Barker, Aug 11 2017
Formula
G.f.: (1 - 4 x)/(1 - 11 x + 29 x^2).
a(n) = 11*a(n-1) - 29*a(n-2).
a(n) = (2^(-n-1)*((11-sqrt(5))^(n+1)*(-7+2*sqrt(5)) + (11+sqrt(5))^(n+1)*(7+2*sqrt(5)))) / (29*sqrt(5)). - Colin Barker, Aug 11 2017
Comments