cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289810 p-INVERT of A081696, where p(S) = 1 - S - S^2.

This page as a plain text file.
%I A289810 #10 Aug 13 2017 16:50:57
%S A289810 1,3,10,37,141,548,2155,8543,34062,136393,547957,2207144,8908901,
%T A289810 36021499,145853606,591277797,2399421839,9745388640,39611178893,
%U A289810 161109065899,655647568024,2669558849029,10874316446699,44313536385428,180644362403905,736631134007651
%N A289810 p-INVERT of A081696, where p(S) = 1 - S - S^2.
%C A289810 Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
%C A289810 See A289780 for a guide to related sequences.
%t A289810 z = 60; s = x/(x + Sqrt[1 - 4*x]); p = 1 - s - s^2;
%t A289810 Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A081696 shifted *)
%t A289810 Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289810 *)
%Y A289810 Cf. A081696, A289780.
%K A289810 nonn,easy
%O A289810 0,2
%A A289810 _Clark Kimberling_, Aug 12 2017