This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289813 #41 May 09 2024 03:12:31 %S A289813 0,1,0,2,3,2,0,1,0,4,5,4,6,7,6,4,5,4,0,1,0,2,3,2,0,1,0,8,9,8,10,11,10, %T A289813 8,9,8,12,13,12,14,15,14,12,13,12,8,9,8,10,11,10,8,9,8,0,1,0,2,3,2,0, %U A289813 1,0,4,5,4,6,7,6,4,5,4,0,1,0,2,3,2,0,1,0,16 %N A289813 A binary encoding of the ones in ternary representation of n (see Comments for precise definition). %C A289813 The ones in the binary representation of a(n) correspond to the ones in the ternary representation of n; for example: ternary(42) = 1120 and binary(a(42)) = 1100 (a(42) = 12). %C A289813 See A289814 for the sequence encoding the twos in ternary representation of n. %C A289813 By design, a(n) AND A289814(n) = 0 (where AND stands for the bitwise AND operator). %C A289813 See A289831 for the sum of this sequence and A289814. %C A289813 For each pair of numbers without common bits in base 2 representation, say x and y, there is a unique index, say n, such that a(n) = x and A289814(n) = y; in fact, n = A289869(x,y). %C A289813 The scatterplot of this sequence vs A289814 looks like a Sierpinski triangle pivoted to the side. %C A289813 For any t > 0: we can adapt the algorithm used here and in A289814 in order to uniquely enumerate every tuple of t numbers mutually without common bits in base 2 representation. %H A289813 Rémy Sigrist, <a href="/A289813/b289813.txt">Table of n, a(n) for n = 0..6560</a> %F A289813 a(0) = 0. %F A289813 a(3*n) = 2 * a(n). %F A289813 a(3*n+1) = 2 * a(n) + 1. %F A289813 a(3*n+2) = 2 * a(n). %F A289813 Also, a(n) = A289814(A004488(n)). %F A289813 A053735(n) = A000120(a(n)) + 2*A000120(A289814(n)). - _Antti Karttunen_, Jul 20 2017 %e A289813 The first values, alongside the ternary representation of n, and the binary representation of a(n), are: %e A289813 n a(n) ternary(n) binary(a(n)) %e A289813 -- ---- ---------- ------------ %e A289813 0 0 0 0 %e A289813 1 1 1 1 %e A289813 2 0 2 0 %e A289813 3 2 10 10 %e A289813 4 3 11 11 %e A289813 5 2 12 10 %e A289813 6 0 20 0 %e A289813 7 1 21 1 %e A289813 8 0 22 0 %e A289813 9 4 100 100 %e A289813 10 5 101 101 %e A289813 11 4 102 100 %e A289813 12 6 110 110 %e A289813 13 7 111 111 %e A289813 14 6 112 110 %e A289813 15 4 120 100 %e A289813 16 5 121 101 %e A289813 17 4 122 100 %e A289813 18 0 200 0 %e A289813 19 1 201 1 %e A289813 20 0 202 0 %e A289813 21 2 210 10 %e A289813 22 3 211 11 %e A289813 23 2 212 10 %e A289813 24 0 220 0 %e A289813 25 1 221 1 %e A289813 26 0 222 0 %t A289813 Table[FromDigits[#, 2] &[IntegerDigits[n, 3] /. 2 -> 0], {n, 0, 81}] (* _Michael De Vlieger_, Jul 20 2017 *) %o A289813 (PARI) a(n) = my (d=digits(n,3)); fromdigits(vector(#d, i, if (d[i]==1, 1, 0)), 2) %o A289813 (PARI) a(n) = fromdigits(digits(n, 3)%2, 2); \\ _Ruud H.G. van Tol_, May 08 2024 %o A289813 (Python) %o A289813 from sympy.ntheory.factor_ import digits %o A289813 def a(n): %o A289813 d = digits(n, 3)[1:] %o A289813 return int("".join('1' if i==1 else '0' for i in d), 2) %o A289813 print([a(n) for n in range(51)]) # _Indranil Ghosh_, Jul 20 2017 %Y A289813 Cf. A000120, A004488, A005836, A053735, A289814, A289831, A289869. %K A289813 nonn,base,look %O A289813 0,4 %A A289813 _Rémy Sigrist_, Jul 12 2017