This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289814 #33 May 09 2024 03:12:18 %S A289814 0,0,1,0,0,1,2,2,3,0,0,1,0,0,1,2,2,3,4,4,5,4,4,5,6,6,7,0,0,1,0,0,1,2, %T A289814 2,3,0,0,1,0,0,1,2,2,3,4,4,5,4,4,5,6,6,7,8,8,9,8,8,9,10,10,11,8,8,9,8, %U A289814 8,9,10,10,11,12,12,13,12,12,13,14,14,15,0 %N A289814 A binary encoding of the twos in ternary representation of n (see Comments for precise definition). %C A289814 The ones in the binary representation of a(n) correspond to the twos in the ternary representation of n; for example: ternary(42) = 1120 and binary(a(42)) = 10 (a(42) = 2). %C A289814 See A289813 for the sequence encoding the ones in ternary representation of n and additional comments. %H A289814 Rémy Sigrist, <a href="/A289814/b289814.txt">Table of n, a(n) for n = 0..6560</a> %F A289814 a(0) = 0. %F A289814 a(3*n) = 2 * a(n). %F A289814 a(3*n+1) = 2 * a(n). %F A289814 a(3*n+2) = 2 * a(n) + 1. %F A289814 Also, a(n) = A289813(A004488(n)). %F A289814 A053735(n) = A000120(A289813(n)) + 2*A000120(a(n)). - _Antti Karttunen_, Jul 20 2017 %e A289814 The first values, alongside the ternary representation of n, and the binary representation of a(n), are: %e A289814 n a(n) ternary(n) binary(a(n)) %e A289814 -- ---- ---------- ------------ %e A289814 0 0 0 0 %e A289814 1 0 1 0 %e A289814 2 1 2 1 %e A289814 3 0 10 0 %e A289814 4 0 11 0 %e A289814 5 1 12 1 %e A289814 6 2 20 10 %e A289814 7 2 21 10 %e A289814 8 3 22 11 %e A289814 9 0 100 0 %e A289814 10 0 101 0 %e A289814 11 1 102 1 %e A289814 12 0 110 0 %e A289814 13 0 111 0 %e A289814 14 1 112 1 %e A289814 15 2 120 10 %e A289814 16 2 121 10 %e A289814 17 3 122 11 %e A289814 18 4 200 100 %e A289814 19 4 201 100 %e A289814 20 5 202 101 %e A289814 21 4 210 100 %e A289814 22 4 211 100 %e A289814 23 5 212 101 %e A289814 24 6 220 110 %e A289814 25 6 221 110 %e A289814 26 7 222 111 %t A289814 Table[FromDigits[#, 2] &[IntegerDigits[n, 3] /. d_ /; d > 0 :> d - 1], {n, 0, 81}] (* _Michael De Vlieger_, Jul 20 2017 *) %o A289814 (PARI) a(n) = my (d=digits(n,3)); fromdigits(vector(#d, i, if (d[i]==2, 1, 0)), 2) %o A289814 (PARI) a(n) = fromdigits(digits(n, 3)\2, 2); \\ _Ruud H.G. van Tol_, May 08 2024 %o A289814 (Python) %o A289814 from sympy.ntheory.factor_ import digits %o A289814 def a(n): %o A289814 d = digits(n, 3)[1:] %o A289814 return int("".join('1' if i == 2 else '0' for i in d), 2) %o A289814 print([a(n) for n in range(101)]) # _Indranil Ghosh_, Jul 20 2017 %Y A289814 Cf. A000120, A053735, A289813. %K A289814 nonn,base,look %O A289814 0,7 %A A289814 _Rémy Sigrist_, Jul 12 2017