A289816 The second of a pair of coprime numbers whose factorizations depend on the ternary representation of n (See Comments for precise definition).
1, 1, 2, 1, 1, 2, 3, 3, 6, 1, 1, 2, 1, 1, 2, 3, 3, 6, 4, 5, 10, 4, 5, 10, 12, 15, 30, 1, 1, 2, 1, 1, 2, 3, 3, 6, 1, 1, 2, 1, 1, 2, 3, 3, 6, 4, 5, 10, 4, 5, 10, 12, 15, 30, 5, 7, 14, 5, 7, 14, 15, 21, 42, 5, 7, 14, 5, 7, 14, 15, 21, 42, 20, 35, 70, 20, 35, 70
Offset: 0
Examples
For n=42: - 42 = 2*3^1 + 1*3^2 + 1*3^3, - S(0) = { 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, ... }, - S(1) = S(0) \ { 3^(1+j) with j > 0 } = { 2, 3, 4, 5, 7, 8, 11, 13, 16, 17, 19, 23, 25, 29, ... }, - S(2) = S(1) \ { 2^(2+j) with j > 0 } = { 2, 3, 4, 5, 7, 11, 13, 17, 19, 23, 25, 29, ... }, - S(3) = S(2) \ { 5^(1+j) with j > 0 } = { 2, 3, 4, 5, 7, 11, 13, 17, 19, 23, 29, ... }, - a(42) = 3.
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10000
Programs
-
PARI
a(n) = my (v=1, x=1); \ for (o=2, oo, \ if (n==0, return (v)); \ if (gcd(x,o)==1 && omega(o)==1, \ if (n % 3, x *= o); \ if (n % 3==2, v *= o); \ n \= 3; \ ); \ );
-
Python
from sympy import gcd, primefactors def omega(n): return 0 if n==1 else len(primefactors(n)) def a(n): v, x, o = 1, 1, 2 while True: if n==0: return v if gcd(x, o)==1 and omega(o)==1: if n%3: x*=o if n%3==2:v*=o n //= 3 o+=1 print([a(n) for n in range(101)]) # Indranil Ghosh, Aug 02 2017
Comments