This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289831 #23 Apr 22 2021 22:03:33 %S A289831 0,1,1,2,3,3,2,3,3,4,5,5,6,7,7,6,7,7,4,5,5,6,7,7,6,7,7,8,9,9,10,11,11, %T A289831 10,11,11,12,13,13,14,15,15,14,15,15,12,13,13,14,15,15,14,15,15,8,9,9, %U A289831 10,11,11,10,11,11,12,13,13,14,15,15,14,15,15,12 %N A289831 a(n) = A289813(n) + A289814(n). %C A289831 The ones in the binary representation of a(n) correspond to the nonzero digits in the ternary representation of n; for example: ternary(42) = 1120 and binary(a(42)) = 1110 (a(42) = 14). %C A289831 Each number k >= 0 appears 2^A000120(k) times. %C A289831 a(A004488(n)) = a(n). %H A289831 Rémy Sigrist, <a href="/A289831/b289831.txt">Table of n, a(n) for n = 0..6560</a> %F A289831 a(0) = 0. %F A289831 a(3*n) = 2*a(n). %F A289831 a(3*n + 1) = 2*a(n) + 1. %F A289831 a(3*n + 2) = 2*a(n) + 1. %e A289831 The first values, alongside the ternary representation of n, and the binary representation of a(n), are: %e A289831 n a(n) ternary(n) binary(a(n)) %e A289831 -- ---- ---------- ------------ %e A289831 0 0 0 0 %e A289831 1 1 1 1 %e A289831 2 1 2 1 %e A289831 3 2 10 10 %e A289831 4 3 11 11 %e A289831 5 3 12 11 %e A289831 6 2 20 10 %e A289831 7 3 21 11 %e A289831 8 3 22 11 %e A289831 9 4 100 100 %e A289831 10 5 101 101 %e A289831 11 5 102 101 %e A289831 12 6 110 110 %e A289831 13 7 111 111 %e A289831 14 7 112 111 %e A289831 15 6 120 110 %e A289831 16 7 121 111 %e A289831 17 7 122 111 %e A289831 18 4 200 100 %e A289831 19 5 201 101 %e A289831 20 5 202 101 %e A289831 21 6 210 110 %e A289831 22 7 211 111 %e A289831 23 7 212 111 %e A289831 24 6 220 110 %e A289831 25 7 221 111 %e A289831 26 7 222 111 %t A289831 Table[FromDigits[Sign@ IntegerDigits[n, 3], 2], {n, 0, 100}] (* _Indranil Ghosh_, Aug 03 2017 *) %o A289831 (PARI) a(n) = my (d=digits(n,3)); fromdigits(vector(#d, i, sign(d[i])), 2) %o A289831 (Python) %o A289831 from sympy.ntheory.factor_ import digits %o A289831 from sympy import sign %o A289831 def a(n): %o A289831 d=digits(n, 3)[1:] %o A289831 return int(''.join(str(sign(i)) for i in d), 2) %o A289831 print([a(n) for n in range(101)]) # _Indranil Ghosh_, Aug 03 2017 %Y A289831 Cf. A000120, A004488, A289813, A289814. %K A289831 nonn,base %O A289831 0,4 %A A289831 _Rémy Sigrist_, Jul 13 2017