cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289838 a(n) = A289815(n) * A289816(n).

This page as a plain text file.
%I A289838 #27 Apr 22 2021 09:30:44
%S A289838 1,2,2,3,6,6,3,6,6,4,10,10,12,30,30,12,30,30,4,10,10,12,30,30,12,30,
%T A289838 30,5,14,14,15,42,42,15,42,42,20,70,70,60,210,210,60,210,210,20,70,70,
%U A289838 60,210,210,60,210,210,5,14,14,15,42,42,15,42,42,20,70,70
%N A289838 a(n) = A289815(n) * A289816(n).
%C A289838 Each number k > 0 appears 2^omega(k) times (where omega = A001221).
%C A289838 a(A004488(n)) = a(n) for any n >= 0.
%C A289838 The number of distinct prime factors of a(n) equals the number of nonzero digits in the ternary representation of n.
%H A289838 Rémy Sigrist, <a href="/A289838/b289838.txt">Table of n, a(n) for n = 0..10000</a>
%e A289838 a(42) = A289815(42) * A289816(42) = 20 * 3 = 60.
%o A289838 (PARI) a(n) = { my (v=1);
%o A289838        for (o=2, oo,
%o A289838            if (n==0, return (v));
%o A289838            if (gcd(v, o)==1 && omega(o)==1,
%o A289838                if (n % 3, v *= o);
%o A289838                n \= 3;
%o A289838            );
%o A289838        );}
%o A289838 (Python)
%o A289838 from sympy import gcd, primefactors
%o A289838 def omega(n): return 0 if n==1 else len(primefactors(n))
%o A289838 def a(n):
%o A289838     v, o = 1, 2
%o A289838     while True:
%o A289838         if n==0: return v
%o A289838         if gcd(v, o)==1 and omega(o)==1:
%o A289838             if n%3: v*=o
%o A289838             n //= 3
%o A289838         o+=1
%o A289838 print([a(n) for n in range(101)]) # _Indranil Ghosh_, Aug 02 2017
%Y A289838 Cf. A001221, A004488, A289815, A289816.
%K A289838 nonn,base,look
%O A289838 0,2
%A A289838 _Rémy Sigrist_, Jul 13 2017