This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289842 #51 Nov 23 2020 06:56:56 %S A289842 1,3,11,27,83,195,515,1155,2899,6387,15219,32883,76275,163059,368883, %T A289842 780531,1738259,3653715,8022355,16759635,36428371,75765843,163217491, %U A289842 338120787,723384915,1493913171,3176799827,6542573139,13844246099,28447592019,59934789203 %N A289842 Sum of products of terms in all partitions of 2*n into powers of 2. %H A289842 Seiichi Manyama, <a href="/A289842/b289842.txt">Table of n, a(n) for n = 0..3309</a> %F A289842 a(n) = [x^(2*n)] Product_{k>=0} 1/(1 - 2^k*x^(2^k)). - _Ilya Gutkovskiy_, Sep 10 2018 %F A289842 a(n) ~ c * n * 2^n, where c = 2.1343755406794500897789546611306737041750472866941557748356... - _Vaclav Kotesovec_, Jun 18 2019 %e A289842 n | partitions of 2*n into powers of 2 | a(n) %e A289842 -------------------------------------------------------------------------- %e A289842 1 | 2 , 1+1 | 2+1 = 3. %e A289842 2 | 4 , 2+2 , 2+1+1, 1+1+1+1 | 4+4+2+1 = 11. %e A289842 3 | 4+2, 4+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1, 1+1+1+1+1+1 | 8+4+8+4+2+1 = 27. %p A289842 b:= proc(n, i, p) option remember; `if`(n=0, p, %p A289842 `if`(i<1, 0, add(b(n-j*i, i/2, p*i^j), j=0..n/i))) %p A289842 end: %p A289842 a:= n-> (t-> b(t, 2^ilog2(t), 1))(2*n): %p A289842 seq(a(n), n=0..33); # _Alois P. Heinz_, Oct 27 2017 %t A289842 b[n_, i_, p_] := b[n, i, p] = If[n == 0, p, If[i < 1, 0, Sum[b[n - j i, i/2, p i^j], {j, 0, n/i}]]]; %t A289842 a[n_] := b[2n, 2^Floor@Log[2, 2n], 1]; %t A289842 a /@ Range[0, 33] (* _Jean-François Alcover_, Nov 23 2020, after _Alois P. Heinz_ *) %Y A289842 Cf. A000123, A018819. %K A289842 nonn %O A289842 0,2 %A A289842 _Seiichi Manyama_, Oct 27 2017