This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289847 #6 Aug 15 2017 19:42:20 %S A289847 2,11,53,253,1205,5740,27336,130200,620129,2953634,14067934,67004505, %T A289847 319137367,1520027050,7239773429,34482491204,164237487721, %U A289847 782250685197,3725800625523,17745705518523,84521448139914,402569240665810,1917406730442806,9132462688572345 %N A289847 p-INVERT of the primes (A000040), where p(S) = 1 - S - S^2. %C A289847 Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453). %C A289847 See A289780 for a guide to related sequences. %t A289847 z = 60; s = Sum[Prime[k] x^k, {k, 1, z}]; p = 1 - s - s^2; %t A289847 Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000040 *) %t A289847 Drop[CoefficientList[Series[1/p, {x, 0, z}], x] , 1](* A289847 *) %Y A289847 Cf. A000040, A030017 ("INVERT" applied to the primes), A289928. %K A289847 nonn,easy %O A289847 0,1 %A A289847 _Clark Kimberling_, Aug 14 2017