A289869 Square array T(n,k) (n>=0, k>=0) read by antidiagonals downwards: T(n,k) = A005836(n) + 2*A005836(k).
0, 2, 1, 6, 3, 3, 8, 7, 5, 4, 18, 9, 9, 6, 9, 20, 19, 11, 10, 11, 10, 24, 21, 21, 12, 15, 12, 12, 26, 25, 23, 22, 17, 16, 14, 13, 54, 27, 27, 24, 27, 18, 18, 15, 27, 56, 55, 29, 28, 29, 28, 20, 19, 29, 28, 60, 57, 57, 30, 33, 30, 30, 21, 33, 30, 30, 62, 61, 59
Offset: 1
Examples
The table begins: x\y: 0 1 2 3 4 5 6 7 8 9 ... 0: 0 2 6 8 18 20 24 26 54 56 ... 1: 1 3 7 9 19 21 25 27 55 57 ... 2: 3 5 9 11 21 23 27 29 57 59 ... 3: 4 6 10 12 22 24 28 30 58 60 ... 4: 9 11 15 17 27 29 33 35 63 65 ... 5: 10 12 16 18 28 30 34 36 64 66 ... 6: 12 14 18 20 30 32 36 38 66 68 ... 7: 13 15 19 21 31 33 37 39 67 69 ... 8: 27 29 33 35 45 47 51 53 81 83 ... 9: 28 30 34 36 46 48 52 54 82 84 ... ...
Links
- Rémy Sigrist, First 100 antidiagonals of array, flattened
Programs
-
PARI
T(n,k) = fromdigits(binary(n),3) + 2*fromdigits(binary(k),3)
-
Python
def T(n, k): return int(bin(n)[2:], 3) + 2*int(bin(k)[2:], 3) for n in range(11): print([T(k, n - k) for k in range(n + 1)]) # Indranil Ghosh, Aug 03 2017
Comments