A289923 Limiting sequence of coefficients of 1/([1+r] - [1+2r]x + [1+3r]x^2 - ...), where [ ] = floor and r approaches 19/21 from the left.
1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 0, 0, 2, 7, 9, 5, 1, 0, 0, 0, 0, 0, 3, 12, 19, 15, 6, 1, 0, 0, 0, 0, 5, 22, 40, 39, 22, 7, 1, 0, 0, 0, 8, 39, 81, 94, 67, 30, 8, 1, 0, 0, 13, 69, 160, 214, 183, 104, 39, 9, 1, 0, 21, 121, 310, 468, 464
Offset: 0
Links
- Ray Chandler, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (1, -1, 1, -1, 1, -1, 1, -1, 1, 0, 1, -1, 1, -1, 1, -1, 1, -1, 1).
Programs
-
Mathematica
z = 2000; r = 19/21-10^(-9); CoefficientList[Series[1/Sum[Floor[1 + (k + 1)*r] (-x)^k, {k, 0, z}], {x, 0, z}], x];
Formula
G.f.: 1/([1+r] - [1+2r]x + [1+3r]x^2 - ...), where [ ] = floor and r = 19/21-10^(-9).
G.f.: (1 + x)^2*(1 - x + x^2)*(1 - x + x^2 - x^3 + x^4 - x^5 + x^6)*(1 + x - x^3 - x^4 + x^6 - x^8 - x^9 + x^11 + x^12) / (1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7 + x^8 - x^9 - x^11 + x^12 - x^13 + x^14 - x^15 + x^16 - x^17 + x^18 - x^19). - Colin Barker, Jul 20 2017
Comments