This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289971 #20 Aug 30 2021 21:34:37 %S A289971 1,1,2,4,9,20,49,114,277,665,1608,3875 %N A289971 Number of permutations of [n] determined by their antidiagonal sums. %H A289971 C. Bebeacua, T. Mansour, A. Postnikov, and S. Severini, <a href="https://arxiv.org/abs/math/0506334">On the X-rays of permutations</a>, arXiv:math/0506334 [math.CO], 2005. %H A289971 FindStat - Combinatorial Statistic Finder, <a href="http://www.findstat.org/St000886">The number of permutations with the same antidiagonal sums</a>. %H A289971 Martin Rubey, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL24/Rubey/rubey5.html">Alternating Sign Matrices Through X-Rays</a>, J. Int. Seq., Vol. 24 (2021), Article 21.6.5. %t A289971 xray[perm_List] := Module[{P, n = Length[perm]}, P[_, _] = 0; Thread[perm -> Range[n]] /. Rule[i_, j_] :> Set[P[i, j], 1]; Table[Sum[P[i - j + 1, j], {j, Max[1, i - n + 1], Min[i, n]}], {i, 1, 2n - 1}]]; %t A289971 a[n_] := xray /@ Permutations[Range[n]] // Tally // Count[#, {_List, 1}]&; %t A289971 Do[Print[n, " ", a[n]], {n, 0, 10}] (* _Jean-François Alcover_, Feb 28 2020 *) %o A289971 (Sage) %o A289971 def X_ray(pi): %o A289971 P = Permutation(pi).to_matrix() %o A289971 n = P.nrows() %o A289971 return tuple(sum(P[k-1-j][j] for j in range(max(0, k-n), min(k,n))) %o A289971 for k in range(1,2*n)) %o A289971 @cached_function %o A289971 def X_rays(n): %o A289971 return sorted(X_ray(pi) for pi in Permutations(n)) %o A289971 def statistic(pi): return X_rays(pi.size()).count(X_ray(pi)) %o A289971 [[statistic(pi) for pi in Permutations(n)].count(1) for n in range(7)] %Y A289971 Cf. A019589, A002047, A290279, A290280. %K A289971 nonn,more %O A289971 0,3 %A A289971 _Martin Rubey_, Jul 16 2017 %E A289971 a(8)-a(11) from _Alois P. Heinz_, Jul 24 2017