A289976 p-INVERT of (0,0,1,2,3,5,8,...), the Fibonacci numbers preceded by two zeros, where p(S) = 1 - S - S^2.
0, 0, 1, 1, 2, 5, 9, 18, 36, 70, 137, 268, 522, 1017, 1980, 3852, 7492, 14568, 28321, 55051, 106999, 207952, 404134, 785366, 1526186, 2965752, 5763103, 11198858, 21761463, 42286357, 82169547, 159668921, 310262351, 602888757, 1171506956, 2276419286
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2, 1, -1, -2, -1, 1)
Programs
-
Mathematica
z = 60; s = x^3/(1 - x - x^2); p = 1 - s - s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* 0,0,1,2,3,5,... *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289976 *)
Formula
G.f.: ((1 - x)^2 x^2 (1 + x))/(1 - 2 x - x^2 + x^3 + 2 x^4 + x^5 - x^6).
a(n) = 2*a(n-1) + a(n-2) - a(n-3) - 2*a(n-4) - a(n-5) + a(n-6).
Comments