A289979 Define two sequences n1(i) and n2(i) by the recurrences n1(i) = n1(i-1) + digsum(n2(i-1)), n2(i) = n2(i-1) + digsum(n1(i-1)), with initial values n1(1) = n and n2(1) = 0. Then a(n) is the smallest m such that n1(i) = n2(i) = m for some i, or -1 if no such m exists.
1, 2, 3, 4, 5, 6, 7, 8, 9, 86, 86, 42, 86, 20, 42, 53, 86, 108, 20, 110, 222, 110, 31, 222, 310, 110, 288, 31, 97, 75, 154, 64, 75, 692, 154, 468, 64, 176, 75, 389, 367, 132, 187, 389, 648, 367, 209, 132, 211, 1772, 411, 446, 1715, 828, 1772, 7150, 411, 413
Offset: 1
Examples
n1(1) = 12, n2(1) = 0 n1(2) = 12 = 12 + digsum(0), n2(2) = 3 = 0 + digsum(12) n1(3) = 15 = 12 + digsum(3), n2(3) = 6 = 3 + digsum(12) n1(4) = 21 = 15 + digsum(6), n2(4) = 12 = 6 + digsum(15) n1(5) = 24 = 21 + 3, n2(5) = 15 = 12 + 3 n1(6) = 30 = 24 + 6, n2(6) = 21 = 15 + 6 n1(7) = 33 = 30 + 3, n2(7) = 24 = 21 + 3 n1(8) = 39 = 33 + 6, n2(8) = 30 = 24 + 6 n1(9) = 42 = 39 + 3, n2(9) = 42 = 30 + 12
Links
- Anthony Sand, Table of n, a(n) for n = 1..80
Crossrefs
Cf. A004207.
Programs
-
Mathematica
Table[NestWhileList[{#1 + Total@ IntegerDigits[#2], #2 + Total@ IntegerDigits[#1]} & @@ # &, {n, 0}, UnsameQ @@ # &, 1, 10^4][[-1, -1]], {n, 80}] (* Michael De Vlieger, Jul 17 2017 *)
Formula
n1(1) = n, n2(1) = 0, then n1(i) = n1(i-1) + digsum(n2(i-1)), n2(i) = n2(i-1) + digsum(n1(i-1)) until n1(i) = n2(i).
Comments